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a b s t r a c t

TiO2 nanotubes decorated with Bi2O3/Bi2O2.33 nanosheets were prepared through a facile avenue that
combines sacrifice template and hydrothermal methods. The TiO2 nanotube structure provided a large
specific surface area, and the TiO2/(Bi2O3/Bi2O2.33) heterojunction broadened the light absorption range
by reducing the bandgap to 2.746 eV. The TiO2/(Bi2O3/Bi2O2.33) heterostructure demonstrated high
adsorption capability for methyl orange (100 mg/L) with a 70% adsorption rate after 60 min. The pho-
tocatalytic performance of the TiO2/(Bi2O3/Bi2O2.33) heterostructure was evaluated through the degra-
dation of rhodamine B (RhB) and tetracycline hydrochloride (TCH). The removal rates of RhB (10 mg/L)
and high concentration TCH (50 mg/L) could reach 93% and 96% after 60 min and 120 min of light
irradiation, respectively. Theoretical calculations showed that the TiO2/(Bi2O3/Bi2O2.33) structure
enhanced photogenerated charge separation, leading to improved degradation of organic pollutants. This
study provides a facile way for designing and creating heterostructural nanotubes with enhanced per-
formance for removing organic pollutants.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

After decades of rapid industrial development, the harmful
organic contaminants in water are poisoning humans and the
environment. Several methods, such as adsorption [1], photo-
catalytic degradation [2], electrocatalytic degradation [3], wet air
oxidation [4], and so on, have been developed to remove pollutants.
However, using single functional materials to remove contaminants
often has the problem of low efficiency or secondary pollution
(such as the adsorptionmethod). Therefore, many efforts have been
devoted to exploring multifunctional materials that integrate
adsorption functions and photocatalytic degradation through
structural design or component regulation [5].

As a multi-purpose semiconductor, titanium dioxide (TiO2) has
been demonstrated to be a promising candidate material for pho-
tocatalytic degradation of organic pollutants due to its chemical
durability, environmental friendliness, and high photoactivity [6].
).
However, the high recombination rate of electron-hole pairs and
low absorption of visible light severely impede the further devel-
opment of TiO2 in the field of photocatalysis [7]. To solve these
problems, heterostructure is introduced. The internal electric field
from heterostructure can help the rapid separation of electron-hole
pairs, and the reduced bandgap caused by heterostructure en-
hances visible light absorption. In addition, morphological regula-
tion can also have a positive impact on pollutant removal. Different
TiO2 nanostructures are made for better photocatalytic efficiency,
such as nanoparticles [8], nanosheets [9], nanobelts [10] and
nanotubes [11]. Among these nanomaterials, TiO2 nanotubes
should be given special attention because of their large specific
surface area and high light absorption caused by multiple scat-
tering events intrinsic to tubular structures.

Bismuth oxide (Bi2O3) possesses four different crystal formsda,
b, g, and d, and nonstoichiometric phases Bi2O0.75 and Bi2O2.33 [12].
Among them, Bi2O2.33 was demonstrated to have the adsorption
capability for particular ions [13], and b-Bi2O3 exhibits a good
response to visible light for photocatalysis with a bandgap of 2.3 eV.
Furthermore, the TiO2 and Bi2O3 heterostructures could help
accelerate the separation of photo-generated carriers, enhancing
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the photocatalytic capability. Xu et al. synthesized TiO2/Bi2O3
composite film by a sol-gel method and proved that the sample had
good photocatalytic efficiency for Xe3B [14]. Porous Bi2O3/Ti3þ-
TiO2 synthesized by hydrothermal method and photo-reduction
exhibited great photocatalytic degradation capability for tetracy-
cline hydrochloride (TCH) [15], and flower-like TiO2/Bi2O3 prepared
by hydrothermal and calcination methods provided satisfactory
photocatalytic degradation efficiency for p-chlorophenol [16].
Huang et al. synthesized three-dimensional TiO2/Bi2O3 hierarchical
composites that showed good photocatalytic capability for meth-
ylene blue (MB). Although enhanced photocatalytic capability is
obtained by the above-mentioned work, there are still some
problems, such as low concentrations of pollutants adsorbed,
irregular morphology, and tedious synthesis steps.

In this work, we successfully prepared TiO2 nanotubes by sac-
rifice template, and then Bi2O3/Bi2O2.33 nanosheets were decorated
on the TiO2 nanotubes by the hydrothermal method. The formation
of nanotubular structures endows TiO2/(Bi2O3/Bi2O2.33) with a high
specific area, and the heterostructure between TiO2 and Bi2O3/
Bi2O2.33 decelerates the recombination of photogenerated electron-
hole pairs. The nonstoichiometric Bi2O2.33 provides more active
sites for pollutant adsorption, all of which contribute to the efficient
removal of organic pollutants.

2. Experimental

2.1. Materials

Themain component of waste foam is polystyrene (PS), which is
used as the starting material for the sacrifice template. Tetrabutyl
titanate (TBOT, 97%), N, N-dimethylformamide (DMF, 99.5%), ab-
solute ethanol, bismuth nitrate in glycol solution (volume ratio
1:10), methyl orange (MO), and rhodamine B (RhB) were purchased
from Aladdin. TCH was purchased fromMcLean. All chemicals used
in our experiments were of analytical grade and used without
further purification.

2.2. Preparation of TiO2/(Bi2O3/Bi2O2.33) heterostructure

The schematic preparation process of TiO2/(Bi2O3/Bi2O2.33) is
shown in Fig. 1. 1.4 g of waste foamwas addedto 5 mL of DMF with
magnetic stirring for 10 h at 60 �C. The obtained solution was
loaded into a syringe connected to a 15.26 kV power source. The
flow rate of the solution was controlled at 0.67 mL/h, and the dis-
tance from the needle to the rotating acceptor was 16 cm. The
environmental humidity was maintained at 10%. A piece of PS fiber
membrane was finally obtained through this process, which acted
as a sacrificial template for preparing TiO2 nanotubes. The mem-
brane was then soaked in TBOT/ethanol (volume ratio: 1:10) pre-
cursor solution for 5 min, followed by drying treatment at 60 �C for
2 h. Next, the as-prepared sample was calcined in a tube furnace
Fig. 1. Schematic preparation process fo
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under an atmospheric environment at 550 �C for 1 h to remove the
PS template. Finally, the TiO2 nanotubes were obtained.

We put 0.03 g, 0.05 g, or 0.07 g of TiO2 nanotube, 4 mL of
8 mmol/L bismuth nitrate solution, and 8 mL of absolute ethanol
into a Teflon bladder, and then the mixture was sealed into a
stainless-steel reaction kettle. The kettle was placed in a baking
oven at 160 �C for 5 h. After the reaction, the products werewashed
with absolute ethanol three times and dried at 60 �C for 2 h. Thus,
the TiO2 nanotubes decorated with Bi2O3/Bi2O2.33 nanosheets were
obtained, named TB1, TB2, and TB3, respectively.

2.3. Characterization

The morphological characterization was performed by scanning
electron microscopy (SEM Helios G4 UC, Thermo Fisher Scientific).
Characterization information on the phases and purity of samples
was obtained by X-ray powder diffraction (XRD, SmartLab-9kW
diffractometer, Rigaku) measured by using Cu Ka radiation
(l ¼ 0.15418 nm) under 40 kV within a scanning range from 10� to
80�. The elemental composition of TiO2/(Bi2O3/Bi2O2.33) nanotubes
was determined by X-ray energy dispersive analysis (EDX, Aztec
Live ULTIM, Oxford Instruments). The transmission electron mi-
croscope (TEM, Tecnai G2 F20 S-TWIN, FEI Company) was used to
obtain the exposed crystallographic plane of TiO2 and bismuth
oxide. The X-ray photoelectron spectroscopy (XPS) was carried out
on the AXIS Ultra DLD. The UVeVis diffuse reflectance spectra were
measured by a fluorescence spectrometer (F-7000, Hitachi). The
Mott-Schottky curve was monitored using an electrochemical
workstation (CHI660E, Shanghai Chenhua). The degradation capa-
bility was determined by using UVeVis spectrophotometry (UV-
2550, Shimadzu) through measuring the absorbance of methyl
orange (MO), rhodamine B (RhB), and tetracycline hydrochloride
(TCH) at 450 nm, 546 nm, and 357 nm, respectively. A Hitachi
F7000 fluorescence spectrophotometer was used for the photo-
luminescence (PL) measurements with an excitation of 325 nm. A
Bruker EMX Plus spectrometer was used for the electron spin
resonance (ESR) test to identify active species generated in the
photocatalytic process.

2.4. Adsorption experiments

MOwas used to indicate the adsorption capability of samples. At
first, an aqueous solution of 20 mL MO with different concentra-
tions of 50, 100, 150, 200, 300, and 400 mg/L) was prepared, and
20 mg samples were added to each MO solution. Then the mixture
was stirred in dark conditions at room temperature for 24 h to
reach the balance between adsorption and desorption. Afterward,
the mixture was centrifuged to remove the photocatalyst. Several
milliliters of MO solution were drawn at 30-min intervals to
investigate the variation of pollutant concentration calculated from
the UVeVis spectrum. The adsorption capability of samples was
r TiO2/(Bi2O3/Bi2O2.33) nanotubes.
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determined by the change in MO concentration. The pseudo-first-
order and second-order kinetics were investigated by the MO
concentration, which varied with time via mixing 20 mL MO
(100 mg/L) with a 20 mg sample.
2.5. Photocatalytic experiments

The degradation of RhBwas used as an indication to evaluate the
photocatalytic activity of catalysts by measuring the concentration
at a given time interval. At first, an aqueous solution of 20mL of RhB
(10 mg/L) was prepared, and photocatalysts (20 mg) were addedto
the solution. Then the mixture was stirred under dark conditions
for 20 min to reach the balance between adsorption and desorp-
tion. After that, the solution was irradiated under a xenon lamp
(300 W) with stirring to ensure catalysts close contact with RhB.
1 mL of solution was drawn at a given time interval, separated by
centrifuging, and then measured by UVeVis spectrophotometry.
Furthermore, we used TCH to evaluate the degradation capability of
the photocatalysts against antibiotics. An aqueous solution of TCH
(50 mg/L) was prepared. Then 20 mg of pure TiO2 nanotubes, TB1,
TB2, or TB3 were mixed with 20 mL of TCH solution at room
temperature. After stirring for 40 min to reach adsorption and
desorption equilibrium, the mixture was irradiated by a xenon
lamp. The TCH degradation test was the same as that for RhB.

An electrochemical workstation with a three-electrode system
was used to measure the transient photocurrent responses of TiO2
nanotubes and TiO2/(Bi2O3/Bi2O2.33) nanotubes under xenon lamp
irradiation. First, 10 mg of photocatalysts were dispersed in
10mL of C2H5OH, and then ITO conductive glass (1 cm2) was dipped
in the turbid liquid 40 times and dried at 200 �C for 1h to form the
working electrode. The Pt and Ag/AgCl electrodes were used as
reference and counter electrodes.

The reusability of TiO2/(Bi2O3/Bi2O2.33) nanotubes was evaluated
by the degradation of RhB. After each degradation loop, the pho-
tocatalysts were separated by centrifugation. The active agent
species were analysed by adding scavengers EDTA-2Na, P-BQ, and
TBA to capture photogenerated hþ, $O2

�, and $OH in reaction,
respectively.
Fig. 2. SEM images of samples: (a) TiO2 nanotubes, (b) TB1 nanotubes, (c) TB2 nanot
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3. Results and discussion

The morphology images by SEM and TEM in Fig. 2a and Fig. S1b
show TiO2 nanotubes made from sacrificial template PS nanofibers
(Fig. S1a). TiO2 nanotubes are uniform in morphology, with a
smooth surface and a diameter of about 950 nm. The hollow
structure can be observed clearly in Fig. S1b. The morphology of
samples TB1, TB2, and TB3 is presented in Fig. 2bed. It can be seen
that nanosheets successfully grow on the TiO2 nanotubes, and the
growing density of nanosheets decreases with the amount of TiO2
nanotubes increasing from TB1 to TB3. Moreover, the nanosheets
are homogeneously spread on the TiO2 nanotubes’ surface without
any aggregation, which is conducive to the increase of specific
surface area and the exposure of active sites. The EDX analysis and
elemental mapping of the TB2 sample are shown in Fig. S1c and
Fig. S2, respectively. It can be clearly seen that Ti, O, and Bi elements
are evenly distributed on nanotubes. As shown in the TEM image of
TB2 in Fig. 2e, the morphology of nanosheets grown on nanotubes
can be easily observed. The high-resolution TEM (HRTEM) image of
TB2 can be found in Fig. 2f. Three groups of lattice fringes show an
interplanar distance of 0.346 nm, 0.328 nm, and 0.270 nm, corre-
sponding to the (101) plane of anatase TiO2, (201) plane of b-Bi2O3,
and (110) plane of Bi2O2.33, respectively. This result implies that the
nanosheets are composed of b-Bi2O3 and Bi2O2.33, and the TiO2/
(Bi2O3/Bi2O2.33) heterojunction is successfully formed.

XRD measurements are carried out to further determine the
crystal structure of samples. As shown by XRD patterns in Fig. 3a,
the diffraction peaks of TiO2 nanotubes can be indexed to the TiO2
anatase structure (JCPDS 21e1272), which has been demonstrated
to be beneficial to the photocatalytic degradation of organic pol-
lutants [17]. As for the samples TB1, TB2, and TB3, in addition to the
diffraction peaks ascribed to anatase TiO2, the characteristic peak at
about 27.95� can be assigned to the (201) plane of b-Bi2O3 (JCPDS
27e0050), and the peaks at about 32.88� and 47.16� can be indexed
to the (110) and (200) planes of Bi2O2.33 (JCPDS 27e0051), respec-
tively. That is to say, b-Bi2O3 and nonstoichiometric Bi2O2.33 with
more oxygen vacancies simultaneously exist in these samples
except for anatase TiO2, where the former component is conducive
to the photocatalytic degradation [18], and the latter contributes to
ubes, and (d) TB3 nanotubes. TEM (e) and HRTEM (f) images of TB2 nanotubes.



Fig. 3. (a) XRD patterns of the samples TB1, TB2, TB3, and TiO2 nanotubes. High-resolution XPS spectra of (b) Ti 2p for TiO2 samples, (c) O 1s for TiO2 and TB2 samples, and (d) Bi 4f
for Bi2O3/Bi2O2.33 and TB2 samples.
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the enhanced adsorption capacity [13]. Furthermore, with the
amount of TiO2 nanotubes increasing from TB1 to TB3, the
diffraction peak at about 25.28� strengthens, which corresponds to
the (101) plane of anatase TiO2, indicating a reduction trend in
Bi2O3/Bi2O2.33 loading.

The XPS tests are conducted to determine the samples’ chemical
composition and binding energy. The full XPS spectra calibrated by
the C 1s peak (284.6 eV) for TiO2 nanotubes and TB2 are shown in
Fig. S3. In addition to the Ti 2p peak, Bi 4f can be observed for the
TB2 sample, suggesting the successful loading of bismuth oxide on
the TiO2 nanotube. As shown in the high-resolution XPS spectrum
of Ti 2p for the TiO2 sample in Fig. 3b, two characteristic peaks
located at 458.55 eV and 464.25 eV can be ascribed toTi 2p3/2 and Ti
2p1/2, respectively. The splitting energy between these two peaks is
5.7 eV, suggesting a Ti4þ oxidation state in TiO2 nanotubes [19e22].
The high-resolution XPS spectra of O1s are shown in Fig. 3c. In
addition to one additional peak at 533.12 eV assigned to surface
hydroxyl groups for the TB2 sample, the spectra of O 1s for TiO2 and
TB2 are fitted into two main peaks. The peaks at higher and lower
energy are ascribed to the oxygen vacancy and the lattice oxygen,
respectively. The large peak area centered at 531.03 eV for TB2
reveals the high content of oxygen vacancy with the existence of
Bi2O2.33. In the high-resolution XPS spectrum of Bi 4f in Fig. 3d for
TB2, two peaks with a binding energy of 164.33 eV and 159.13 eV
are indexed to Bi 4f5/2 and Bi 4f7/2, respectively. Compared with the
Bi2O3/Bi2O2.33 sample, these two peaks shift to higher binding en-
ergy, which implies that the electrons flow from Bi2O3 to TiO2.
Furthermore, Bi 4f5/2 or Bi 4f7/2 peak can be divided into two spin-
4

orbit components corresponding to Bi3þ at higher binding energy
and Bi2þ at lower binding energies, respectively.

The UVeVis diffuse reflectance spectra were carried out to
investigate the light absorption of samples. As we can see in Fig. 4a,
in the range of 380e700 nm, the light absorption of TB1, TB2, and
TB3 is higher than that of pure TiO2 nanotubes, suggesting
enhanced visible light capture ability. The higher absorption rate is
due to the interaction between TiO2 and Bi2O3/Bi2O2.33 [23]. The
samples’ bandgap values in Fig. 4b were evaluated by the Tauc plot.
The calculation formula is shown [24]:

ðAhnÞ1=n ¼B
�
hn�Eg

�
(1)

where A is the absorbance of samples, h is the Planck constant, n is
incident photon frequency, Eg is the bandgap, and B is a propor-
tional constant. As shown in Fig. 4b, the bandgaps of TB1, TB2, and
TB3 samples are significantly smaller than those of pure TiO2,
which endows them with stronger visible light absorption and
photocatalytic ability. The bandgap of TiO2 is smaller than the
theoretical value, which may result from the titanium-terminated
anatase surface with a reduced bandgap [25].

The Mott-Schottky test was carried out to investigate the type of
semiconductor and position of flat potential (Efp) which can help
orientate the samples’ band position [26,27]. As we can see in
Fig. 4c and d, the curve slopes of samples TB1, TB2, TB3, TiO2, and
Bi2O3/Bi2O2.33 are positive, suggesting all the samples are n-type
semiconductors [28]. The Efp (vs. Ag/AgCl) of TB1, TB2, TB3, TiO2,
and Bi2O3/Bi2O2.33 are �0.179 eV, �0.256 eV, �0.018 eV, �0.611 eV,



Fig. 4. (a) UVeVis diffuse reflectance spectra, (b) estimated bandgap of samples by Tauc plots, (c) and (d) Mott-Schottky plots, and (e) transient photocurrent responses of samples.
(f) Differential charge density of TiO2/Bi2O3 from the front view.
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and �0.013 eV, respectively, which can be transformed to potential
(vs. NHE) by the equation [29,30]:

ENHE ¼Efp þ E0Ag=AgCl (2)

where E0Ag/AgCl ¼ 0.210 eV [31]. So, the ENHE of TiO2 and Bi2O3/
Bi2O2.33 can be calculated to be about �0.401 eV and 0.197 eV,
respectively. Many studies have shown that the conduction band
minimum (CBM) of n-type semiconductors is about 0.1 eV more
negative than Efp [32]. Thus, the CBM of TiO2 and Bi2O3/Bi2O2.33 is
evaluated to be �0.501 eV and 0.097 eV (vs. NHE), respectively.
Based on a previous calculation, the valence band maximum (VBM)
of TiO2 and Bi2O3/Bi2O2.33 can be about 2.419 eV and 2.807 eV,
respectively.

The transient photocurrent responses were recorded to inves-
tigate the sample's light response. As can be seen from Fig. 4e and
Fig. S4, the current density of TB2 is the strongest. Although the
photocurrent value is not significant compared to other reports, as
shown in Table S1, it is about 7 times higher than that of TiO2,
revealing the stronger charge separation capability of TB2
compared to pure TiO2. The PL spectra of samples are shown in
Fig. S5. The fluorescence intensity of TB2 is smaller than that of pure
TiO2 nanotubes, which further indicates that the heterostructure
elongates the lifetime of photo-induced electron-hole pairs.

To investigate the interaction between the components of the
heterostructure, the theoretical calculation was carried out using
the exchange�correlation functional PBE through the Vienna ab-
initio simulation package (VASP) and projector augmented wave
method [33,34]. Since the valance band energy of Bi2O2.33 is
insufficient to produce active radical �OH [35], the TiO2/(Bi2O3/
Bi2O2.33) heterostructure is simplified to the TiO2/Bi2O3 hetero-
junction. All the models used in the calculation are based on
experimentally determined lattice parameters [36,37]. The plane
wave cutoff energy is set at 420 eV and a G-centered 3 � 4 � 1 k-
point mesh. As can be seen in Fig. S6, the calculated bandgap of
5

TiO2/Bi2O3 is 1.45 eV, which is much smaller than the theoretical
bandgap of anatase TiO2 [38], suggesting the interaction of TiO2 and
Bi2O3 decreases the bandgap. The calculated value is in line with
the reduced bandgap measured by UVeVis diffuse reflectance,
indicating a stronger light adsorption capability. The differential
charge density of TiO2/Bi2O3 nanostructures is shown in Fig. 4f and
Fig. S7. The light-blue part between TiO2 and Bi2O3means depletion
of electrons, and the light-yellow part means accumulation of
electrons. The light-blue and light-yellow parts are well separated,
suggesting a good charge separation capability [39].

To investigate the adsorption and photocatalytic performance,
the adsorption of MO and the degradation of RhB and TCH under a
300 W xenon lamp were carried out. As shown in Fig. 5a, samples
TB1, TB2, and TB3 are used to adsorb 100 mg/L MO. MO is a cationic
dye [40], which can generate positive ions when dissolving in
water, while the O atom in bismuth oxide has strong electronega-
tivity [41]. Thus, the Coulomb force can be generated between
positive ions and O atoms, which strengthens the samples'
adsorption capability. Also, oxygen vacancies in Bi2O2.33 will help
improve the adsorption capability [13]. As we see from Fig. 5a, TB2
can reach 70 mg/g adsorption within 1 h, which is larger than
samples TB1 and TB3. Higher or lower Bi2O3/Bi2O2.33 nanosheet
loads on TiO2 nanotubes do not enhance adsorption. The pseudo-
first-order and pseudo-second-order adsorption kinetics are
analyzed by the following equations:

Inðqe � qtÞ¼ In qe � k1t (3)

1 = ðqe � qtÞ¼1 = qe þ k2t (4)

where qe and qt (mg/g) mean the adsorption capacities under
equilibrium state and at time t (min), respectively, and k1 and k2
mean the pseudo-first-order kinetic rate constant and pseudo-
second-order kinetic rate constant, respectively. As shown in
Fig. 5b, the correlation coefficient (R2) of pseudo-first-order



Fig. 5. (a) MO adsorption over TB1, TB2, and TB3, (b) Pseudo-first-order kinetics and Pseudo-second-order kinetics curves of MO over TB2, (c) Adsorption isotherms of MO on TB1,
TB2, and TB3 (t ¼ 24 h), (d) RhB (10 mg/L) removal over different photocatalysts, (e) Pseudo-first-order reaction kinetics curves of RhB removal, (f) RhB (10 mg/L) cycling
degradation over TB2 photocatalyst, (g) TCH (50 mg/L) removal over different photocatalysts, (h) Pseudo-first-order reaction kinetics curves of TCH removal, (i) TCH (50 mg/L)
cycling degradation over TB2 photocatalyst.
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kinetics (R2 ¼ 0.9913) is higher than that of pseudo-second-order
kinetics (R2 ¼ 0.9681), indicating that internal diffusion is the
rate-determining step. As we can see from Fig. 5c, with an increase
in Bi2O3/Bi2O2.33 load on TiO2 from TB3 to TB1, the maximum MO
adsorption capacity gradually increases.

The Langmuir isotherm model is used to analyze the adsorption
process using the following equation:

Ce = qe ¼Ce = qm þ 1 = ðKL*qmÞ (5)

where qe (mg/g) and Ce (mg/L) mean adsorption capacity and
concentration of solution under equilibrium state, respectively, KL
is the Langmuir isothermal constant, and qm (mg/g) presents the
maximum adsorption capacity.

The degradation of 10 mg/L RhB is shown in Fig. 5d. As we can
see from Fig.s. 5d and 93%, RhB is removed by TB2 after 1 h of
irradiation. In order to reveal the photocatalytic activity, the
degradation kinetics of RhB are linearly fitted, as shown in Fig. 5e.
The degradation activity of TB2 is 4.66-fold higher than that of TiO2.
The outstanding RhB degradation efficiency results from the
interaction between TiO2 and Bi2O3/Bi2O2.33, which narrows the
bandgap compared with TiO2 (shown in Fig. 4b) and enhances the
6

capability of charge separation (shown in Figs. 4e and f). In addition,
themore active sites introduced by Bi2O3/Bi2O2.33 also contribute to
the high performance. To investigate the reusability of TB2, cycling
degradation of RhB (10 mg/L) is carried out. After one cycle of RhB
degradation, the sample was washed with deionized water and
dried overnight at 60 �C. As shown in Fig. 5f, even after five cycles of
RhB degradation, the removal rate is still as high as 91%, which
reveals the excellent reusability and stability of TB2. A degradation
experiment was conducted using 50 mg/L TCH to demonstrate its
practical use. In Fig. 5g, the TCH removal over TB2 reached 96% after
120 min of irradiation. The degradation kinetics of TCH are linearly
fitted, as shown in Fig. 5h. The degradation activity of TB2 is 4.92-
fold higher than that of TiO2, suggesting great photocatalytic ac-
tivity in the TiO2/(Bi2O3/Bi2O2.33) compound. The cycling degrada-
tion of TCH is shown in Fig. 5i; it can be seen that the removal rate
of TCH still remains at 81% after five cycles. The XRD patterns of the
TB2 photocatalyst before and after successive testing are shown in
Fig. S8. There is no obvious difference in their characteristic peaks,
which means satisfactory stability for TB2. The decrease in degra-
dation rate between the first and second cycles can result from the
destruction of nanotubes, which will impede the adsorption rate.
Then, the degradation rate becomes stable after further cycling.



Fig. 6. ESR spin-tripping spectra for (a) DMPO-�OH and (b) DMPO-�O2
� using TB2, (c) trapping experiments in photocatalytic degradation of RhB (10 mg/L) over TB2, (d) The

illustration of RhB photocatalytic degradation by TiO2/(Bi2O3/Bi2O2.33) photocatalyst under full-spectrum light irradiation.
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To elucidate the mechanism behind photocatalytic degradation,
trapping experiments were carried out to find the main oxide spe-
cies, and an ESR test was employed to identify the active species in
the photocatalytic process [42e47] of TB2 by using 5,5-dimethyl-
lpyrroline N-oxide (DMPO) as the spin-trapping agent. As shown in
Fig. 6a, no DMPO-�OH signal is detected in the dark, while the
characteristic 1:2:2:1 quadruple peak of DMPO-�OH is observed
under illumination, indicating the generation of hydroxyl radicals in
the solution under light irradiationwith TB2. As shown in Fig. 6b, no
DMPO-�O2

� signal is detected in the dark, while the characteristic
peak of DMPO-�O2

� is detected under illumination, indicating that
the photogenerated electrons in TB2 reduce dissolved oxygen to
generate superoxide anion radicals. ESR analysis confirms the gen-
erationof �OHand �O2

�during the photocatalytic process of TB2. The
trapping experiment results are shown in Fig. 6c. Three trapping
agents, TBA, EDTA-2Na, and P-BQ, can capture the active radicals
�OH, hþ, and �O2

�, respectively [15,48,49]. As shown in Fig. 6c, with
the addition of EDTA-2Na, the efficiency of RhB degradation shows a
great decline compared with the result shown in Fig. 5d, indicating
that hþ plays a key role in the photocatalytic degradation. The �OH
radical also plays a more important role since the degradation is
hindered by the addition of TBA. The standard redox potentials (O2/
�O2

�, H2O/�OH and OH�/�OH) [50,51] and band structures of TiO2
and Bi2O3/Bi2O2.33 are shown in Fig. 6d. According to the band po-
sition calculated fromMott-Schottky measurements, the contact of
Bi2O3/Bi2O2.33 and TiO2 forms an S-scheme heterostructure. At the
beginning of contact, the electron in the conduction band (CB) of
TiO2 flows into Bi2O3/Bi2O2.33 driven by the built-in potential dif-
ference. Then, accumulation of electrons appears on the Bi2O3/
Bi2O2.33 side, while electron depletion appears on the TiO2 side,
respectively, near the interface, which will generate an internal
7

electric field from TiO2 to Bi2O3/Bi2O2.33. Photogenerated carriers
occur in the heterostructure under light irradiation. The internal
electric field promotes the flow of photogenerated electrons from
the CB of Bi2O3/Bi2O2.33 to TiO2, which recombine with holes in the
VB of TiO2. Thus, the electrons in CB of TiO2 and holes in VB of Bi2O3/
Bi2O2.33 will be retained in their own positions, which possess great
redox ability. Therefore, the hþ in Bi2O3/Bi2O2.33 will react with H2O
or OH� to produce �OH radicals, and the hþ also directly participates
in RhB photocatalytic degradation, which endows TiO2/(Bi2O3/
Bi2O2.33) high photocatalytic performance.

4. Conclusions

Thisworkproposesa facile avenuetoprepareTiO2/(Bi2O3/Bi2O2.33)
catalysts using sacrificial templates and a hydrothermal process. The
heterojunctionbetweenTiO2 andBi2O3/Bi2O2.33 narrows thebandgap
to 2.746 eV and retains the electrons in CB of TiO2 and holes in VB of
Bi2O3/Bi2O2.33, which possess great redox capability. The TB2 could
remove 93%ofRhB (10mg/L)within 60minand 96%of TCH (50mg/L)
within 120min, respectively. Meanwhile, combining TiO2 and Bi2O3/
Bi2O2.33 endows the catalyst with great adsorption capability,
removing 70% of MO (100 mg/L) within 60 min. The photocatalyst's
recyclability was confirmed through repeated degradation experi-
ments. This work provides a facile approach to synthesizing nano-
tubular S-scheme heterojunction photocatalysts with great
photocatalytic and adsorption performance.
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