ELSEVIER Contents lists available at ScienceDirect # Journal of Environmental Chemical Engineering journal homepage: www.elsevier.com/locate/jece # Direct Z-scheme g-C₃N₄/TiO₂ heterojunction porous nanotubes: An ingenious synthesis strategy to enhance photocatalytic activity Sheng-Zhe Zhao ^a, Ran Lu ^a, Yi Yang ^a, Yun Lu ^{b,*}, Raul D. Rodriguez ^c, Jin-Ju Chen ^{a,*} - ^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China - ^b School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China - ^c Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia #### ARTICLE INFO Keywords: Electrospinning Heterostructure G-C₃N₄/TiO₂ Nanotubes Photocatalysis #### ABSTRACT Photocatalysis has a broad prospect for generating H_2 and reactive oxygen species. In this study, porous nanotubular $g\text{-}C_3N_4/\text{TiO}_2$ photocatalysts were obtained via electrospinning combined with an innovative vapor deposition approach. The waste foam was used as the precursor material for TiO_2 nanotubes, reducing production cost and benefiting resource recovery. The modification of $g\text{-}C_3N_4$ onto TiO_2 nanotubes provided extensive active sites with an increased specific surface area and produced the heterojunction to improve charge separation. The $g\text{-}C_3N_4/\text{TiO}_2$ nanotubes displayed remarkable photocatalytic effects in the degradation of organic dye with a removal efficiency of 93.4% and H_2 evolution reaction performing at 4122 $\mu\text{mol}\cdot\text{g}^{-1}\cdot\text{h}^{-1}$ under simulated sunlight. Photocatalytic activation product analyses and density functional theory (DFT) calculations demonstrated a possible photogenerated carriers transfer pathway. This work provides a way to prepare multifunctional porous nanotubes using a facile synthesis method from abandoned resources with implications for environmental remediation and hydrogen generation. #### 1. Introduction In recent years, the efficient utilization of solar energy has shown great significance for energy conservation and environmental remediation. [1,2] Photocatalysis has been extensively studied and achieved remarkable results, including hydrogen production by water splitting, reduction of carbon dioxide to alcohols and other valuable chemicals, and pollutant decomposition. [3-5] Among common semiconductor photocatalysts, titanium oxide (TiO2) shows great value owing to its suitable band gap (~ 3.2 eV), low fabrication cost, good chemical stability, and environmental friendliness. [6-8] Many pieces of research focused on further improving photocatalyst performance. [9,10] On the one hand, photocatalysts with special nanoscale morphology were designed to obtain more active sites, which could enhance photocatalytic efficiency significantly. [11,12] On the other hand, constructing heterojunction photocatalysts based on TiO2 and narrow band gap semiconductors was also a popular research direction that allowed tuning the band structure to extend the spectral response range to visible light. [13–15] More importantly, constructing heterogeneous structures could significantly reduce the recombination rate of photo-induced carriers. [16-18]. Graphitic carbon nitride (g-C₃N₄) is an excellent metal-free semiconductor photocatalyst. It has attracted extensive interest because of its superb visible light response, desirable band gap (~ 2.7 eV), low cost, and layered structure conducive to electron transport. [19,20] However, the photocatalytic performance of bulk g-C₃N₄ is limited because its morphology is difficult to control, reducing active sites and specific surface area. [21,22] Therefore, using g-C₃N₄ as a functional component combined with other semiconductors to construct heterostructure photocatalysts makes efficiently exploiting the individual advantages of each material possible. [23,24] Ingeniously designed heterostructures keep the g-C₃N₄ in a dispersed state and reduce the recombination rate of photo-induced electron/hole pairs, thus considerably increasing the photocatalytic efficiency.[25,26] Among these photocatalysts, TiO₂ with g-C₃N₄ can form the unique Z-scheme heterojunction to facilitate electron-hole separation. [27] Therefore, several works on g-C₃N₄/TiO₂ heterostructures with special morphology have been reported. [28]. So far, $g-C_3N_4/TiO_2$ heterojunctions are obtained mainly by calcining a mixture of nitrogen-rich precursor material (for example, melamine, cyanamide, or urea) and nanoscale TiO_2 in the form of nanoparticles, nanosheets, or nanofibers. However, this calcination way usually leads to the aggregation of $g-C_3N_4$, reducing the density of active E-mail addresses: luyun1501@163.com (Y. Lu), jinjuchen@uestc.edu.cn (J.-J. Chen). ^{*} Corresponding authors. sites available. [29] Meanwhile, the preparation of $g-C_3N_4$ by calcination from nitrogen-rich precursors usually requires anaerobic conditions with high preparation costs. [30] Although some mild synthetic methods have been proposed, the crystallinity of those samples is lower than that of calcination. The critical question is how to obtain $g-C_3N_4/TiO_2$ heterojunctions with good dispersion and high crystallinity. We demonstrate that a way combining the sacrificial template method and vapor deposition provides opens a new approach to achieving this goal. In this work, we synthesized g-C₃N₄/TiO₂ porous nanotubes photocatalysts via sacrificial templates followed by subtle vapor deposition. The TiO₂ nanotubes were obtained with polystyrene nanofibers as sacrificial templates prepared by electrospinning. Then TiO₂ nanotubes were modified by g-C₃N₄ nanosheets to form the g-C₃N₄/TiO₂ heterojunction via sublimating urea in a cleverly designed container. The g-C₃N₄ content in the heterojunction could be controllably adjusted to obtain photocatalysts with significant performance for the photodegradation of methyl orange (MO) and the H₂ evolution under simulated sunlight. This synthesis strategy makes full use of waste resources to reduce the cost, and more importantly, the obtained g-C₃N₄/TiO₂ nanotubes with desirable morphology exhibit outstanding photocatalytic performance. #### 2. Experimental #### 2.1. Materials Experimental materials include waste foam (main components: polystyrene, PS), absolute ethanol (C_2H_6O , 99%), N, N-dimethylformamide (DMF, 99%), urea (CH_4N_2O , 99%), tetrabutyltitanate (TBOT, 99%), 1,4-benzoquinone (BQ, 99%), disodium ethylenediaminetetraacetate (Na_2EDTA , 99%), tert-butyl alcohol (t-BuOH, 99%), methyl orange (MO, 96%), and triethanolamine (TEOA, 99%). All chemicals and solvents, purchased from Aladdin, were of analytical grade. # 2.2. Fabrication of TiO₂ nanotubes Clean polystyrene foam (2.5 g) was added to DMF (10 mL) with magnetic stirring at 60 °C for 1 h to obtain PS/DMF precursor solution. The PS/DMF solution was injected into a syringe that was attached to a high voltage (16 kV). The solution's flow rate was kept at 1 mL/h, and the gap between the positive needle and the negative generator was 20 cm. The humidity during spinning was controlled under 5%. After collection, the white polystyrene nanofibers membrane was successfully obtained and then dried at 85 °C in vacuum for 12 h to remove residual solvent. The obtained PS nanofibers were used as sacrificial templates for the preparation of $\rm TiO_2$ nanotubes, which were first soaked in TBOT/ethanol solution (volume ratio 1:10) to hold 5 min. Then, the resulting PS/TBOT precursor fibres were naturally dried in air after being drained of excess solvent. Finally, the fibres were calcined at 550 °C for 2 h at a rate of 2 °C/min to remove PS templates completely and obtain the $\rm TiO_2$ nanotubes. ### 2.3. Fabrication of g-C₃N₄/TiO₂ heterostructures as photocatalysts The g- C_3N_4 nanosheets were assembled on the surface of TiO_2 nanotubes by an improved vapor deposition. Urea was placed in the bottom of a 100 mL crucible, in which a 30 mL crucible containing 20 mg TiO_2 nanotubes was placed. We made sure that the urea was evenly distributed between the two crucibles. The large crucible was covered with a sealed lid and wrapped with tinfoil to insulate the air. Afterward, the sealed crucible system was transferred into a muffle furnace to calcine at 550 °C for 1 h with a rate of 5 °C/min. The mass of urea was 4 g, 6 g, and 8 g, and the obtained g- C_3N_4 / TiO_2 nanotubes were named as TC1, TC2, and TC3, respectively. For comparison, pure g- C_3N_4 was also prepared by directly heating urea in a sealed crucible. The detailed characterizations and photocatalytic performance test of the as-prepared photocatalysts can be found in Supporting Information (SI). #### 3. Results and discussion The overall synthetic process of g-C₃N₄/TiO₂ nanotubes is shown in Scheme 1. (i) The primary ingredient of the waste foam is polystyrene (PS), which dissolves in the DMF obtained as the precursor solution and further processes into nanofibers by electrospinning. (ii) The PS nanofibers can absorb the TBOT/ethanol as the template and complete decomposition after calcination resulting in hollow TiO₂ nanotubes. (iii) With the temperature increasing, urea sublimates and consumes the oxygen in the system to form a sealed environment, which provides the condition for growing g-C₃N₄ nanosheets on the inner and outer surface of TiO₂ nanotubes. Meanwhile, the increasing pressure promotes microporous formation on the surface of the nanotubes. This process finally ends with the successful generation of porous g-C₃N₄/TiO₂ nanotubes. #### 3.1. Characterization The morphologies of the as-prepared photocatalysts were deduced by scanning electron microscopy (SEM). The surface of the polystyrene template nanofibers is relatively rough and presents a uniform diameter of about 900 nm, as shown in Fig. S1A in SI. The nanofibers' morphology does not change after adsorption of TBOT (Fig. S1B in SI). After calcination, the template nanofibers decompose completely and the TiO₂ nanotube structure is obtained, as shown in Fig. 1A and B. Uniform tubes with a diameter of about 800 nm are observed, and there are many micropores on the nanotubes' surface to increase the specific surface area further. The porous structure formation could be due to the roughness of the template nanofibers. When the humidity is set at 20% during electrospinning, the surface of the obtained template nanofibers is smooth (Fig. S1C in SI). The change in surface roughness may be caused by the different solvent volatilization rates at different humidity. The TiO₂ nanotubes prepared using the smooth template nanofibers show a compact surface in Fig. S1D. SEM images of g-C₃N₄/TiO₂ heterostructures are shown in Fig. 1C-H. Compared with the pure TiO2 nanotubes (Fig. 1A and B), although g- C_3N_4/TiO_2 samples still retain the nanotube structure with the same diameter, the surface roughness increases with g-C₃N₄ depositing on the surface of TiO2 nanotubes. The reason for the formation of porous g-C₃N₄/TiO₂ nanotubes could be explained by the following process. The gaseous urea molecules diffuse into the 3D structure of TiO2 nanotubes and are adsorbed on the surface of TiO2, which eventually grows into dispersive g-C₃N₄. The increased pressure from the sublimation of urea molecules and the internal stress in the g-C₃N₄ growth process lead to the increase in the pore size of TiO₂ nanotubes. Therefore, the morphology of g-C₃N₄/TiO₂ nanotubes can be controlled only by changing the amount of urea in the reactant. The TC2 (Fig. 1E and F) shows the best uniformity with enhanced roughness and pore size, while the porous feature of the TC3 (Fig. 1G and H) disappears due to the excessive generation of g-C₃N₄. The scanning transmission electron microscopy (STEM) image of the TC2 in Fig. 2A clearly shows the porous nanotube structure, and the Fast Fourier Transform (FFT) image in the inset of Fig. 2A shows the heterostructure with good crystallinity. The transmission electron microscopy (TEM) was utilized to analyze the morphology and microstructure further. As shown in Figs. 2B and 2C, TEM images of TC2 show that the g-C₃N₄ nanosheets are uniformly dispersed on the surface of TiO₂ porous nanotubes. The HRTEM image in Fig. 2D demonstrates the lattice spacing of 0.189 nm and 0.324 nm agreeing with the (200) plane of anatase TiO₂ and (002) plane of g-C₃N₄ phase, respectively, revealing the intimate interface between TiO₂ and g-C₃N₄ to form the heterojunction. Therefore, the charge transfer between the TiO₂ and g-C₃N₄ Scheme 1. An illustration for the preparation of porous g-C $_3N_4/TiO_2$ nanotubes. Fig. 1. The SEM images of porous TiO2 nanotubes (A and B), TC1 (C and D), TC2 (E and F), and TC3 (G and H). $\textbf{Fig. 2.} \ \ \textbf{STEM image (A) and FFT analysis (inset), TEM (B-C), HRTEM (D), and EDS \ mapping \ (E-F) \ of porous \ g-C_3N_4/TiO_2 \ (TC2) \ nanotubes.$ will be spatially smooth, which improves photocatalytic efficiency. Meanwhile, the energy dispersive X-ray spectroscopy (EDS) element mapping of the TC2 nanotubes were recorded to analyze the elemental composition distribution. As shown in Fig. 2E-F, besides Ti and O elements of TiO₂, C and N elements are also detected and homogeneously distributed on the surface of the nanotubes. The N element only comes from g-C₃N₄, which suggests that g-C₃N₄ nanosheets are formed on the surface of TiO₂ nanotubes to construct the g-C₃N₄/TiO₂ heterostructure. EDS spectrum shown in Fig. S2 in SI shows the elemental content of the TC2 sample. The C and N peaks directly prove the existence of g-C₃N₄. The phase structures of the as-prepared samples were determined by the X-ray diffraction (XRD) as shown in Fig. 3A. It can be clearly observed that the main diffraction peaks of TiO_2 located at 25.45°, 37.95°, 48.20°, 55.16°, and 62.81° correspond to the (101), (004), (200), (211), and (204) planes of anatase TiO_2 (JCPDS 21–1272). [3] For the g-C₃N₄/TiO₂ nanotubes, the peak at 27.4° is assigned to the (002) lattice planes of g-C₃N₄, [13] confirming the formation of g-C₃N₄ on the surface of TiO_2 . Meanwhile, the intensity of the (002) diffraction peak gradually increases with urea addition, which shows that the components of g-C₃N₄/TiO₂ heterostructures could be easily controlled by sublimating different amounts of urea. Fourier transformed infrared (FT-IR) spectra were used to analyze the surface composition of samples. As shown in Fig. 3B, the peak at $680~\rm cm^{-1}$ for both samples correspond to the vibration of Ti-O-Ti bonds in TiO₂, while peaks at 1241, 1320, 1410, 1564, and 1640 cm⁻¹ can be observed for g-C₃N₄/TiO₂ heterostructure, attributed to the aromatic C-N bonds of g-C₃N₄ nanosheets. [29] All the feature peaks originating from g-C₃N₄ and TiO₂ components coexist in the photocatalyst, further demonstrating that the g- C_3N_4 is successfully formed on the TiO_2 nanotubes. To determine the mass fraction of g- C_3N_4 modified on TiO_2 nanotubes, the thermal gravimetric analysis (TGA) was performed from 25 °C to 700 °C at a heating rate of 5 °C/min. As shown in Fig. 3C, all samples showed significant weight loss at 500–580 °C, ascribed to g- C_3N_4 decomposition. The mass percentages of g- C_3N_4 in TC1, TC2, and TC3 heterostructures are 14.6%, 21.3%, and 33.1%, respectively. The specific surface area and pore volume of as-prepared nanotubes were determined by the nitrogen adsorption/desorption isotherms through the Brunauer-Emmett-Teller (BET) method. Fig. 3D shows that the specific surface area and pore volume of the TiO2 nanotubes are $14.3~\text{m}^2/\text{g}$ and $0.06~\text{cm}^3/\text{g}$, respectively, and the g-C_3N_4/TiO2 (TC2) possesses a specific surface area of $27.7~\text{m}^2/\text{g}$ and pore volume of $0.15~\text{cm}^3/\text{g}$. After the removal of g-C_3N_4 from g-C_3N_4/TiO2 nanotubes through calcination, the specific surface area of the obtained TiO2 nanotubes (defined as TiO2-2, as shown in Fig. S3 in SI) declines to $22.3~\text{m}^2/\text{g}$ with a pore volume of $0.11~\text{cm}^3/\text{g}$. Meanwhile, the specific surface area of the pure g-C_3N_4 (Fig. S4 in SI) is $8.9~\text{m}^2/\text{g}$ with a pore volume of $0.07~\text{cm}^3/\text{g}$. The results indicate that the innovative vapor deposition approach can effectively increase the surface pores of the TiO2 nanotubes and restrain the agglomeration of g-C_3N_4, which is consistent with SEM images. X-ray photoelectron spectroscopy (XPS) was carried out to analyze the surface chemical states of as-prepared samples. The XPS spectra of g-C₃N₄/TiO₂ (TC2) nanotubes in Fig. S5 show the Ti, O, C, and N peaks. High-resolution XPS spectra of Ti 2p in Fig. 4A show peaks at 458.4 eV and 464.2 eV corresponding to Ti $2p_{3/2}$ and Ti $2p_{1/2}$ of TiO₂ in TC2. The distance between the two peaks is about 5.7 eV, proving that the Ti Fig. 3. The XRD patterns of the prepared TiO_2 , $g-C_3N_4$, and $g-C_3N_4/TiO_2$ samples (A). The FTIR spectra of TiO_2 and $g-C_3N_4/TiO_2$ (TC2) nanotubes (B). The TGA curves of $g-C_3N_4/TiO_2$ samples (C). The nitrogen adsorption/desorption isotherms of porous TiO_2 and $g-C_3N_4/TiO_2$ (TC2) nanotubes (D). Fig. 4. The high-resolution XPS patterns of Ti 2p (A), C 1 s (B), N 1 s (C), and O 1 s (D) in TiO2 nanotubes, bulk g-C3N4, and g-C3N4/TiO2 (TC2) nanotubes. element exists in the Ti⁴⁺ state. [28] The characteristic peaks at 284.6 eV, 286.1 eV, and 288.1 eV in the high-resolution spectrum of C 1 s in TC2 (Fig. 4B) are assigned to the C-C, C-O, and N-C=N groups. In the N 1 s spectrum (Fig. 4C), three peaks in TC2 are deconvolved at 398.6 eV, 399.8 eV, and 400.9 eV corresponding to the groups C=N-C, N-(C)₃, and N-H, respectively. It is noted that these three peaks in TC2 shift to higher binding energy compared with those of pure g-C₃N₄, meaning that the g-C₃N₄ on the surface partly lost electrons. [31] The high-resolution O 1 s spectrum (Fig. 4D) for the pure TiO2 nanotubes is composed of two peaks at 529.7 eV and 533.8 eV, corresponding to the Ti-O bond and surface adsorbed oxygen. For the TC2 nanotubes (Fig. 4D), a new peak appears at 533.1 eV, besides the peaks from the Ti-O band and surface adsorbed oxygen. The peak can be assigned to the C-O-Ti bond, which may form during the urea sublimation reaction. [28] Meanwhile, the Ti-O bond shifts to lower binding energy, meaning that the TiO₂ in g-C₃N₄/TiO₂ gains electrons. [31] These results indicate the electrons move from g-C₃N₄ nanosheets to TiO₂ nanotubes after coupling to achieve Fermi level equilibrium, which effectively confirms the heterostructure between g-C₃N₄ and TiO₂. The ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were used to investigate the optical properties of the photocatalysts. The absorption spectra of the as-prepared samples in the region from 250 to 800 nm are shown in Fig. 5A. The absorption of pure TiO_2 nanotubes is mainly in the UV light region, and the g-C $_3$ N $_4$ can absorb UV light and an amount of visible light. Compared with pure TiO_2 nanotubes, all g-C $_3$ N $_4$ /TiO $_2$ composite nanotubes have a significant absorption in the visible spectral range. Meanwhile, the visible light absorption of g-C $_3$ N $_4$ /TiO $_2$ nanotubes shows a rising trend with the increase of g-C $_3$ N $_4$ loading, which is attributed to the excellent visible-light photo-response of g-C $_3$ N $_4$ nanosheets and the remarkable photosensitive effect produced by the heterostructure between ${\rm TiO_2}$ and ${\rm g\text{-}C_3N_4}$. [32,33] Notably, the significant absorption enhance of TC2 and TC3 in the visible light range may be due to the light scattering, which caused by the pores and cracks on the nanotubes formed under heat treatment. The band gap energies (E_g) of photocatalysts were calculated by the Kubelka-Munk equation: [34]. $$(ah\nu)^{\rm n}={\rm A}(h\nu-{\rm E_g})\cdot$$ Where a, hv, A and E_g represent the absorption coefficient, photon energy, a constant and band gap energy, respectively. [35] The values of n for anatase TiO_2 or TiO_2 based photocatalyst and $g-C_3N_4$ are correspond to 1/2 and 2. As shown in Figs. 5B and 5C, the band gap energies of pure TiO_2 nanotubes, TC1, TC2, TC3 and $g-C_3N_4$ can be calculated to be 3.06 eV, 2.87 eV, 2.38 eV, 2.23 eV and 2.86 eV, respectively. It is clear that compared to pure TiO_2 nanotubes, the band gap energies of $g-C_3N_4/TiO_2$ (TC1, TC2, and TC3) nanotubes are reduced significantly. This phenomenon may be caused by the morphology of nanotubes is favorable for multiple light absorption, and the surface defects (such as porous structure, lattice disorder, oxygen vacancies, etc.), which extend the light absorption range of $g-C_3N_4/TiO_2$ nanotubes to the visible light region. The electronic properties and crystal structure of the g- C_3N_4/TiO_2 heterostructure were calculated by using Vienna ab-initio simulation package (VASP). To obtain the lowest energy structure, the g- C_3N_4/TiO_2 composite nanotube structure was fabricated from a unit cell of g- C_3N_4 and a supercell of TiO_2 , and the resulting lattice mismatch rate is only 1.07%. [36,37] The band gap is calculated to be 2.81 eV as shown in Fig. 5D, which is close to the experimental value (2.23–2.87 eV). The difference between the theoretical and actual values can be attributed to the percentage of g- C_3N_4 loading and the enhancement of visible light Fig. 5. The DRS spectra of the as-prepared samples (A). The corresponding deduced band gap energy of TiO₂, TC1, TC2, TC3 nanotubes (B), and bulk g-C₃N₄ (C). The electronic band structure of the g-C₃N₄/TiO₂ calculated by VASP (D). absorption caused by surface defects in actual samples. # 3.2. Photocatalytic performance of g- C_3N_4/TiO_2 porous nanotubes To identify the photocatalytic performance, the as-prepared samples were evaluated by the photodegradation of MO under xenon lamp irradiation. The photodegradation rate of MO was investigated by C_t/C₀ $(C_0$ is the initial MO concentration, and C_t is the concentration of MO at time t, which were determined by Lambert-Beer law from the results of UV-Vis spectroscopy). Fig. 6A shows the concentration change of MO during the photodegradation process. After reaching the adsorption/ desorption equilibrium in dark (2 h), the photodegradation system showed a certain adsorption effect especial for the TC2, which may be caused by the porous structure of the sample itself and consistent with the BET analysis. After being irradiated by a xenon lamp for 50 min, the TC2 nanotubes exhibit a removal efficiency of 93.4%. This performance is superior to that of TC3 (83.1%) and much higher than TC1 (77.5%) and TiO2 nanotubes (61.2%). The photodegradation of MO without catalysts is almost negligible. Meanwhile, in order to compare the photocatalytic activities of the samples, their photodegradation rate could be fitted by the pseudo-first-order kinetic analysis $ln(C_0/C_t)=kt$, where k is the rate constant (min⁻¹). As shown in Fig. 6B, the TC2 presents the highest photodegradation rate and 2.73 times higher than TiO2 nanotubes, which suggests that the heterostructure could highly improves photocatalytic activity. Fig. S6 (shown in SI) presents the results of MO degradation under visible light irradiation ($\lambda > 420$ nm). It evidences a similar trend to that under full spectrum illumination, with TC2 exhibiting the highest degradation efficiency due to the introduction of g-C₃N₄ to TiO₂ nanotubes, effectively improving the photocatalytic properties. The high specific surface area and enhanced charge carrier separation efficiency are conducive to the high photocatalytic activities of TC2. The photocatalytic stability of g-C₃N₄/TiO₂ (TC2) composite nanotubes was investigated for the degradation of MO under xenon lamp irradiation. The photocatalyst was washed with ethanol and centrifuged three times for the next test. The results in Fig. 6C show that the catalyst exhibits excellent stability even after four reuse cycles. The photocatalytic efficiency of the g-C₃N₄/TiO₂ (TC2) nanotubes are compared with other photocatalysts in Table S1 (shown in SI). The results shown that the g-C₃N₄/TiO₂ nanotubes with excellent potential in photodegradation of organic pollutants. Furthermore, reactive oxygen species trapping experiments allowed us to identify which active species play a significant role in the MO degradation process. The Na₂EDTA, t-BuOH, and BQ are usually utilized to scavenge photogenerated holes (h⁺), hydroxyl radicals (\bullet OH), and superoxide radicals (\bullet O $\frac{1}{2}$), respectively. Generally speaking, the specific scavengers can react with reactive species faster than MO molecules, resulting in the reduced degradation rate of MO. It is clearly observed that the degradation rate of MO by TC2 has been significantly impeded in the presence of BQ, followed by Na₂EDTA in Fig. 6D. This result implies that \bullet O₂ acts as the main active species in the process of MO photodegradation. The photocatalytic H_2 evolution performance of the as-prepared samples was measured under xenon lamp irradiation using TEOA as a sacrificial agent as shown in Figs. 7A and 7B. Pure TiO_2 nanotubes exhibit a low H_2 generation rate (1714 μ mol·g⁻¹·h⁻¹), while with the increase of the amount of g-C₃N₄, the rate of H_2 evolution is significantly enhanced (2987 and 4122 μ mol·g⁻¹·h⁻¹ for TC1 and TC2, respectively). The further increase of g-C₃N₄ leads to a reduction of H_2 generation Fig. 6. The removal rates of MO by the photocatalysts under xenon lamp irradiation (A) and corresponding pseudo-first-order kinetics fitting data (B). The repeatability tests studied on the TC2 nanotubes for four cycles (C). The impact of various scavengers on MO photodegradation over TC2 (D). (3120 µmol·g $^{-1}\cdot h^{-1}$ for TC3), which may be due to a decrease in active sites' exposure resulting from excessive g-C₃N₄ shielding. The TC2 exhibited the highest H₂ evolution rate, which is 2.4 times higher than pure TiO₂ nanotubes. Meanwhile, the photocatalytic stability of the TC2 was also investigated by four reaction cycles (2 h per cycle) under the same condition. As shown in Fig. 7C, no noticeable deactivation was observed in the long H₂ evolution, which means the high photocatalytic stability of the porous g-C₃N₄/TiO₂ composite nanotubes. In addition, the apparent quantum efficiency (AQE) of TC2 for photocatalytic H₂ evolution exhibits a notable quantum yield of 23.7% at $\lambda=330$ nm (Fig. 7D), which approximately matches with the UV-Vis absorption spectrum. #### 3.3. Mechanism of photocatalytic performance enhancement When the g- C_3N_4/TiO_2 composite nanotubes were excited by light, the efficiency of photo-induced electrons (e⁻) and holes (h⁺) is the key to the photocatalytic process. To determine the production of photogenerated e⁻ and h⁺, the transient photocurrents of the TiO_2 and g- C_3N_4/TiO_2 (TC2) nanotubes were evaluated under xenon lamp irradiation. As shown in Fig. 8A, compared with the TiO_2 nanotubes, the g- C_3N_4/TiO_2 nanotubes show a stronger photo-generated current. And the magnitude of photocurrent changes little during on/off switching operation, demonstrating a stable photoelectrical performance of g- C_3N_4/TiO_2 nanotubes. Photoluminescence (PL) spectra was measured to investigate the photo-induced charge transfer process of the composite nanotubes. As seen in Fig. 8B, the emission peak intensity of TC2 nanotubes is significantly lower than that of pure TiO_2 nanotubes. Since the recombination rate of photo-generated charge carriers is directly proportional to the PL peak intensity, the lower PL intensity of the TC2 nanotubes implies that the photo-generated charge carriers are seriously limited. [32] The EIS Nyquist plots of TiO_2 and TC2 nanotubes were also used to investigate the charge transfer resistance of the photo-induced carriers. As shown in Fig. 8C, the EIS radius of the TC2 nanotubes is smaller than that of bulk TiO_2 due to a lower electronic impedance and higher transfer efficiency in g- C_3N_4/TiO_2 nanotubes. [31]. The Mott-Schottky plots of pure TiO_2 nanotubes and bulk g-C₃N₄ present positive slopes, which indicate that the as-prepared samples possess an n-type semiconductor nature as shown in Figs. 8D and 8E. The flat-band potentials of the TiO_2 nanotubes and bulk g-C₃N₄ were estimated to be - 0.71 eV and - 1.12 eV (vs. Ag/AgCl), corresponding to - 0.51 eV and - 0.92 eV (vs. NHE), respectively. Since the flat-band potential of n-type semiconductors is close to the conduction band (CB) position. [36] Thus, the CB positions of TiO_2 nanotubes and pure g-C₃N₄ are about - 0.51 eV and - 0.92 eV (vs. NHE), respectively. Meanwhile, the valence band (VB) of TiO_2 nanotubes and pure g-C₃N₄ can be calculated to be 2.55 eV and 1.94 eV (vs. NHE) following the equation $E_{VB} = E_g + E_{CB}$. Efficient charge separation is essential in improving the photocatalytic performance of $g\text{-}C_3N_4/\text{TiO}_2$ composite nanotubes. To further understand the relationship between $g\text{-}C_3N_4$ and TiO_2 on photocatalytic performance, the differential charge density of $g\text{-}C_3N_4/\text{TiO}_2$ heterostructure was calculated by first principles. The results are shown in Fig. 8F; the yellow and blue regions represent the net electron accumulation and depletion distributions. Obviously, h^+ are clustered in the $g\text{-}C_3N_4$ region, while e^- are clustered in the TiO_2 region, which is consistent with XPS results. In addition, the charge redistribution between $g\text{-}C_3N_4$ and TiO_2 mainly occurs at the interface region, meaning that the heterostructure is conducive to efficient charge transfer. Based on the above experimental results and theoretical calculations, a possible charge transfer pathway of $g-C_3N_4/TiO_2$ in the photocatalytic Fig. 7. The time-dependent H_2 evolution (A) and the rate of H_2 evolution (B) by the as-prepared photocatalysts under xenon lamp irradiation with the sacrificial agent of triethylamine. Stability study of photocatalytic H_2 evolution of TC2 nanotubes (C). Wavelength-dependent AQE for photocatalytic H_2 evolution (right axis) and UV-Vis light absorption spectrum (left axis) of TC2 nanotubes (D). Fig. 8. The photocurrents spectra (A), the PL spectra (B), and the EIS Nyquist plots (C) of TiO_2 and $g-C_3N_4/TiO_2$ (TC2) nanotubes. The Mott-Schottky plots of TiO_2 nanotubes (D) and bulk $g-C_3N_4$ (E). The differential charge density of $g-C_3N_4/TiO_2$ heterojunction (F). Fig. 9. Schematic illustration of the mechanism for the Z-scheme heterostructure in g- C_3N_4/TiO_2 nanotubes before contact (A) and after contact (B). Schematic of charge-transfer process of g- C_3N_4/TiO_2 nanotubes for photocatalytic degradation (C) and H_2 evolution (D) under xenon lamp irradiation. process is delineated in Fig. 9. The band positions of each parts in g-C₃N₄/TiO₂ nanotubes can be evaluated by combining the analyses of UV-Vis DRS and Mott-Schottky plots as shown in Fig. 9A. The electrons in g-C₃N₄ can spontaneously transfer to TiO₂ nanotubes when the two semiconductors are in close proximity since the flat-band potential (conduction band position) of pure g-C₃N₄ is more negative than that of TiO₂ nanotubes. Consequently, the internal electric field forms on the interface of the two semiconductors directing from g-C₃N₄ to TiO₂ as shown in Fig. 9B, promoting the recombination of photo-generated h⁺ in g-C₃N₄ and e⁻ in TiO₂ nanotubes in the photocatalytic process. [38] As a result, photo-generated e in g-C₃N₄ with stronger reduction ability and h⁺ in TiO₂ with higher oxidation ability remained spatial separation, as shown in Fig. 9C, which implies a Z-scheme heterostructure charge transfer process in the g-C₃N₄/TiO₂ nanotubes. [39] Under xenon lamp irradiation, the photogenerated e can move from the VB to the CB of TiO₂ nanotubes and then transfer to g-C₃N₄ to recombine with h⁺ under the action of the internal electric field. Thus, the h⁺ in VB of TiO₂ and the e^- in CB of g-C₃N₄ are retained to participate in the reaction. The e^- in g-C₃N₄ can reduce the surface adsorbed oxygen to form \bullet O₂. The h⁺ in TiO2 mainly interact with the pollutant molecules directly, and some of them react with H₂O to generate •OH. Eventually, organic pollutants are oxidized by these active species into CO2 and H2O as shown in Fig. 9C. The potential of g-C₃N₄ conduction band minimum is much negative than that of hydrogen evolution, which is enough for splitting the water molecule. Therefore, under the right environmental conditions (such as oxygen-free, sacrificial agent presence, etc), the accumulated electrons in g-C₃N₄ can directly react with H⁺ ions to produce H₂ as shown in Fig. 9D. # 4. Conclusions In this study, porous $g\text{-}C_3N_4/\text{TiO}_2$ nanotubes were obtained via electrospinning combined with an ingenious vapor deposition method. The highly porous nanotube structure provided a large specific surface area, while the heterostructure enhanced the separation of photogenerated charge carriers. This $g\text{-}C_3N_4/\text{TiO}_2$ nanotube composite showed excellent photocatalytic activity for organic degradation and hydrogen production. Our work provides a facile avenue for fabricating heterostructures with porous nanotubes from waste resources and future applications in waste utilization and high-efficiency photocatalysis. #### CRediT authorship contribution statement Sheng-Zhe Zhao: Conceptualization, Investigation, Writing – original draft., Ran Lu: Supervision, Validation, Methodology, Yi Yang: Formal analysis, Yun Lu: Funding acquisition, Raul D. Rodriguez: Writing – review & editing, Jin-Ju Chen: Project administration, Funding acquisition. # **Declaration of Competing Interest** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. #### Data availability The data that has been used is confidential. #### Acknowledgements The work was supported by the Sichuan Science and Technology Program (grant No 2023YFG0215), Russian Foundation for Basic Research (grant No 21-53-12045). #### References - [1] X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, TiO₂/Ti₃C₂ as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde, Appl. Catal. B: Environ. 286 (2021), 119885. - [2] Y. Fu, Z. Ren, J. Wu, Y. Li, W. Liu, P. Li, L. Xing, J. Ma, H. Wang, X. Xue, Direct Z-scheme heterojunction of ZnO/MoS₂ nanoarrays realized by flowing-induced - piezoelectric field for enhanced sunlight photocatalytic performances, Appl. Catal. B: Environ. 285 (2021), 119785. - [3] J. Cai, X. Wu, S. Li, F. Zheng, Controllable location of Au nanoparticles as cocatalyst onto TiO₂@CeO₂ nanocomposite hollow spheres for enhancing photocatalytic activity, Appl. Catal. B: Environ. 201 (2017) 12–21. - [4] X. Li, H. Jiang, C. Ma, Z. Zhu, X. Song, H. Wang, P. Huo, X. Li, Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C₃N₄ film photocatalyst for reduction of CO₂ to CO, Appl. Catal. B: Environ. 283 (2021), 119638. - [5] R. Zhong, Z. Zhang, S. Luo, Z.C. Zhang, L. Huang, M. Gu, Comparison of TiO₂ and g-C₃N₄ 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution, Catal. Sci. Technol. 9 (2019) 75–85. - [6] Z. Hou, J. Chu, C. Liu, J. Wang, A. Li, T. Lin, C.P. François-Xavier, High efficient photocatalytic reduction of nitrate to N₂ by Core-shell Ag/SiO₂@cTiO₂ with synergistic effect of light scattering and surface plasmon resonance, Chem. Eng. J. 415 (2021). 128863. - [7] X. Sun, W. He, X. Hao, H. Ji, W. Liu, Z. Cai, Surface modification of BiOBr/TiO₂ by reduced AgBr for solar-driven PAHs degradation: mechanism insight and application assessment, J. Hazard Mater. 412 (2021), 125221. - [8] Z. Cheng, S. Zhao, Z. Han, Y. Zhang, X. Zhao, L. Kang, A novel preparation of Ag@ TiO₂ tubes and their potent photocatalytic degradation efficiency, CrystEngComm 18 (2016) 8756–8761. - [9] J. Liu, N. Ma, W. Wu, Q. He, Recent progress on photocatalytic heterostructures with full solar spectral responses, Chem. Eng. J. 393 (2020), 124719. - [10] Z. Cheng, S. Zhao, L. Han, A novel preparation method for ZnO/gamma-Al₂O₃ nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles, Nanoscale 10 (2018) 6892–6899. - [11] S. Zhao, Z. Cheng, L. Kang, Y. Zhang, X. Zhao, A novel preparation of porous spongshaped Ag/ZnO heterostructures and their potent photocatalytic degradation efficiency, Mater. Lett. 182 (2016) 305–308. - [12] S. Zhao, Z. Cheng, L. Kang, M. Li, Z. Gao, The facile preparation of Ag decorated TiO₂/ZnO nanotubes and their potent photocatalytic degradation efficiency, RSC Adv. 7 (2017) 50064–50071. - [13] Z. Dai, Y. Zhen, Y. Sun, L. Li, D. Ding, ZnFe₂O₄/g-C₃N₄ S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal, Chem. Eng. J. 415 (2021), 129002. - [14] M. Moradi, F. Hasanvandian, A.A. Isari, F. Hayati, B. Kakavandi, S.R. Setayesh, CuO and ZnO co-anchored on g-C₃N₄ nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin, Appl. Catal. B: Environ. 285 (2021), 119838. - [15] L. Matějová, K. Kočí, M. Reli, L. Čapek, A. Hospodková, P. Peikertová, Z. Matěj, L. Obalová, A. Wach, P. Kuśtrowski, A. Kotarba, Preparation, characterization and photocatalytic properties of cerium doped TiO₂: on the effect of Ce loading on the photocatalytic reduction of carbon dioxide, Appl. Catal. B: Environ. 152–153 (2014) 172–183. - [16] J. Wang, J. Ma, Q. Zhang, Y. Chen, L. Hong, B. Wang, J. Chen, H. Jing, New heterojunctions of CN/TiO₂ with different band structure as highly efficient catalysts for artificial photosynthesis, Appl. Catal. B: Environ. 285 (2021), 119781. - [17] H. Yan, R. Wang, R. Liu, T. Xu, J. Sun, L. Liu, J. Wang, Recyclable and reusable direct Z-scheme heterojunction CeO₂/TiO₂ nanotube arrays for photocatalytic water disinfection, Appl. Catal. B: Environ. 291 (2021), 120096. - [18] R. Guan, D. Wang, Y. Zhang, C. Liu, W. Xu, J. Wang, Z. Zhao, M. Feng, Q. Shang, Z. Sun, Enhanced photocatalytic N₂ fixation via defective and fluoride modified TiO₂ surface, Appl. Catal. B: Environ. 282 (2021), 119580. - [19] J. Fu, J. Yu, C. Jiang, B. Cheng, g-C₃N₄-based heterostructured photocatalysts, advanced energy, Materials 8 (2018) 1701503. - [20] G. Dong, P. Qiu, F. Meng, Y. Wang, B. He, Y. Yu, X. Liu, Z. Li, Facile synthesis of sulfur-doped polymeric carbon nitride/MoS₂ face-to-face heterojunction for highly efficient photocatalytic interfacial charge separation, Chem. Eng. J. 384 (2020), 123330. - [21] L. Luo, Z. Gong, J. Ma, K. Wang, H. Zhu, K. Li, L. Xiong, X. Guo, J. Tang, Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water, Appl. Catal. B: Environ. 284 (2021), 119742. - [22] L. Zhou, J. Lei, F. Wang, L. Wang, M.R. Hoffmann, Y. Liu, S.-I. In, J. Zhang, Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H₂O₂ production, Appl. Catal. B: Environ. 288 (2021), 119993. - [23] S. Wan, M. Ou, X. Wang, Y. Wang, Y. Zeng, J. Ding, S. Zhang, Q. Zhong, Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H₂ evolution and CO₂ reduction, Dalton Trans. 48 (2019) 12070–12079. - [24] H. Ming, D. Wei, Y. Yang, B. Chen, C. Yang, J. Zhang, Y. Hou, Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation, Chem. Eng. J. 424 (2021), 130296. - [25] T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, A.A. Elzatahry, L. Zhang, G. Zheng, Photoelectrochemical Conversion from Graphitic C₃N₄ Quantum Dot Decorated Semiconductor Nanowires, ACS Appl. Mater. Interfaces 8 (2016) 12772–12779 - [26] G. Liu, Y. Huang, H. Lv, H. Wang, Y. Zeng, M. Yuan, Q. Meng, C. Wang, Confining single-atom Pd on g-C₃N₄ with carbon vacancies towards enhanced photocatalytic NO conversion, Appl. Catal. B: Environ. 284 (2021), 119683. - [27] W. Zou, X.-H. Liu, C. Xue, X.-T. Zhou, H.-Y. Yu, P. Fan, H.-B. Ji, Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C₃N₄ heterojunction for promoting the oxidative coupling of amines, Appl. Catal. B: Environ. 285 (2021), 119863. - [28] X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, Y. Liu, Three dimensional hierarchical heterostructures of g-C₃N₄ nanosheets/TiO₂ nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light, J. Hazard Mater. 344 (2018) 113–122. - [29] X. Hu, P. Lu, R. Pan, Y. Li, J. Bai, Y. He, C. Zhang, F. Jia, M. Fu, Metal-ion-assisted construction of cyano group defects in g-C₃N₄ to simultaneously degrade wastewater and produce hydrogen, Chem. Eng. J. 423 (2021), 130278. - [30] G. Li, Z. Xie, S. Chai, X. Chen, X. Wang, A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution, Appl. Catal. B: Environ. 283 (2021), 119637. - [31] Y. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C₃N₄/TiO₂ free-separation photocatalyst, Chem. Eng. J. 370 (2019) 287–294. - [32] R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C₃N₄/TiO₂ heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ. 187 (2016) 47–58. - [33] X. Yang, Y. Zhang, Y. Wang, C. Xin, P. Zhang, D. Liu, B.B. Mamba, K.K. Kefeni, A. T. Kuvarega, J. Gui, Hollow β-Bi₂O₃@CeO₂ heterostructure microsphere with controllable crystal phase for efficient photocatalysis, Chem. Eng. J. 387 (2020), 124100. - [34] Q. Chen, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, Enhanced visible light photocatalytic activity of g-C₃N₄ decorated ZrO_{2-x} nanotubes heterostructure for degradation of tetracycline hydrochloride, J. Hazard Mater. 384 (2020), 121275. - [35] H.S. Moon, K.C. Hsiao, M.C. Wu, Y. Yun, Y.J. Hsu, K. Yong, Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic h₂ evolution and in-depth analysis of the charge-transfer mechanism, Adv. Mater. (2022), e2200172. - [36] J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.Z. Qiao, Metal-free 2D/2D phosphorene/g-C₃N₄ van der waals heterojunction for highly enhanced visible-light photocatalytic H₂ production, Adv. Mater. 30 (2018), e1800128. - [37] S. Ma, W. Song, B. Liu, W. Zhong, J. Deng, H. Zheng, J. Liu, X.-Q. Gong, Z. Zhao, Facet-dependent photocatalytic performance of TiO₂: A DFT study, Appl. Catal. B: Environ. 198 (2016) 1–8. - [38] C. Xu, D. Li, X. Liu, R. Ma, N. Sakai, Y. Yang, S. Lin, J. Yang, H. Pan, J. Huang, T. Sasaki, Direct Z-scheme construction of g-C₃N₄ quantum dots/TiO₂ nanoflakes for efficient photocatalysis, Chem. Eng. J. 430 (2022), 132861. - [39] X. Ma, Q. Chen, G. Liu, Y. Zhou, D. Ma, S. Xin, C. Yu, B. Zhang, Y. Xin, Construction of netlike 3D Z-scheme photoelectrodes with improved photocatalytic performance based on g-C₃N₄ nanosheets modified TiO₂ nanobelt-tubes, Chem. Eng. Sci. 226 (2020). 115844.