Nanoscale

PAPER View Article Online View Journal

Cite this: DOI: 10.1039/d4nr05278a

Photoactivated defect engineering and nanostructure functionalization of MoS₂ via a photochemical Fenton process†

Tuan-Hoang Tran,^a Raul D. Rodriguez, (10 ** Aura Garcia,^a Qiang Ma, (10 ** Tao Zhang, (10 ** Ranran Wang (10 ** and Evgeniya Sheremet (10 ** and Evgeniya She

Molybdenum disulfide (MoS₂) is a promising 2D material for (photo)catalysis. However, its performance in (photo)catalytic applications is usually limited by a small amount of catalytically active defects. Here, we developed a novel large-scale, rapid, green, low-cost photoetching technique to transform multilayer MoS₂ into a few-layer MoS₂ with high defect density and simultaneous spatial functionalization of MoS₂ with magnetic nanostructures using a photo-driven Fenton reaction. The photoetching process and resulting nanostructures were characterized by optical microscopy, atomic force microscopy, photoluminescence, and Raman spectroscopy. We elucidated the reaction mechanism driven by the Fenton reaction in which photogenerated charge carriers in MoS₂ play a dual role: reducing Fe³⁺ and Cu²⁺ ions and generating hydrogen peroxide (H_2O_2) from water and dissolved O_2 . In this Fenton reaction, Fe²⁺ ions react with H₂O₂ to generate hydroxyl (*OH) radicals, oxidizing MoS₂ and forming metal oxide nanostructures at the reaction sites. This dual pathway, triggered by MoS₂ photon absorption even at lowintensity illumination, ensures in situ generation of Fenton reactants (Fe²⁺ and H₂O₂), generating ${}^{\bullet}$ OH, to achieve on-demand thinning and functionalization of MoS₂ in a single step. Electron paramagnetic resonance spectroscopy confirmed the generation of *OH radicals as the main reactive oxygen species. This photochemical approach enables the photo-driven creation and growth of defects from submicrometer regions up to a dozen micrometers, both at native defects and predefined defective region seeds, by photochemical processing of MoS₂ in FeCl₃ and CuSO₄ solutions. The presence of metal oxide nanostructures on MoS₂ was verified using magnetic force microscopy, scanning electron microscopy with elemental mapping by energy dispersive X-ray spectroscopy and Raman spectroscopy. The simultaneous photoetching and metal oxide deposition improves the catalytic performance of MoS₂ in the electrical hydrogen evolution reaction, evidenced by a potential shift from -0.7 V (graphite electrode) to -0.47 V(MoS₂ sample photoetched in FeCl₃ solution under a halogen lamp illumination) at a current density of 10 mA cm⁻².

Received 14th December 2024, Accepted 6th April 2025 DOI: 10.1039/d4nr05278a

rsc li/nanoscale

1. Introduction

Molybdenum disulfide (MoS₂) is the most studied 2D semiconductor material, known for its unique properties, such as emerging photoluminescence in its monolayer form¹ and its potential in next-generation applications such as photovoltaics,² energy storage,³ photon detection,⁴ and (photo)catalysis.⁵ In (photo)catalysis, defect engineering in MoS₂ opens new avenues for tailoring its physical and electronic properties to enhance its performance.^{6,7} For instance, MoS₂ edges (defects) are catalytically active sites for the hydrogen evolution reaction (HER), with near zero Gibbs free energy;⁸ consequently, increasing the defect concentration improves HER efficiency.⁹ However, large-scale, low-cost, and environmentally friendly production of thin MoS₂ with high defect density remains a challenge. Various bottom-up and top-down approaches have been developed to synthesize thin MoS₂ with high defect density (Table S1†). Among bottom-up methods, wet chemical synthesis offers control over surface morphology, crystallite size, and doping but faces scalability issues due to size and thickness inhomogeneity and harsh conditions (*e.g.*,

^aTomsk Polytechnic University, Lenina Avenue, 30, 634050 Tomsk, Russia. E-mail: raul@tpu.ru

^bKey Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 China

^cShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China † Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d4nr05278a

high pressure and hazardous chemical agents).¹⁰ In the top-down approaches, chemical liquid exfoliation can achieve high defect density under ambient conditions but suffers from non-uniform thickness and poor production yield, limiting large-scale production. Other conventional top-down techniques like laser thinning in air and plasma treatment^{11–13} struggle with scalability, cost, and safety.⁹

Here, we introduced a single-step, scalable, cost-effective, and environmentally friendly method for thinning and functionalization of MoS2 in an aqueous solution using a light-driven Fenton reaction with FeCl3 or CuSO4 solutions alone. Unlike traditional Fenton processes, this approach does not require external supplies of Fe2+ or H2O2 as they are produced in the system under light illumination. In this process, the production of hydroxyl radicals (OH) generated by the Fenton reaction enables the etching of multilayer to few-layer MoS₂ with high defect density and simultaneously forming metal oxide nanostructures on MoS2. The spatial control of the etching and metal oxide deposition area can be achieved by laser processing technology in the air and by adjusting light intensity and illumination time. Incorporating defects and metal oxide nanoparticles enhances the catalytic activity of multilayer MoS₂ for the HER, demonstrating the versatility and potential for creating new MoS2-based materials with added functionalities.

2. Results and discussion

2.1. Boosting ROS production by the Fenton reaction with FeCl₃ for MoS₂ photoetching

It is known that MoS_2 is thinned through oxidation in water by reactive oxygen species (ROS), such as superoxide radicals (${}^{\bullet}O_2^{-}$) and ${}^{\bullet}OH$. This process can be described by the following reactions (1) and (2):¹⁵

$$MoS_2 + 6^{\bullet}O_2^- \rightarrow MoO_4^{2-} + 2SO_4^{2-}$$
 (1)

$$MoS_2 + 18^{\bullet}OH \rightarrow MoO_4^{2-} + 2SO_4^{2-} + 6H_2O + 6H^+$$
 (2)

However, Ghim *et al.* reported that only 0.21% of MoS_2 with a thickness of 18 nm dissolves in water after 24 hours of exposure to simulated sunlight, ¹⁴ highlighting the need for efficient ROS generation methods for rapid and effective etching of multilayer MoS_2 to few-layer MoS_2 with high defect density.

Advanced oxidation processes (AOPs), including chemical, photochemical, and electrochemical methods, have been developed to effectively generate strongly oxidizing ROS. ¹⁶ The Fenton reaction is the most commonly used AOP method, producing strong ${}^{\bullet}$ OH radicals according to the following eqn (3) and (4), with the reaction rate constant k:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH, \quad k = 51 \text{ M}^{-1} \text{ s}^{-1}$$
 (3)

$${
m Fe}^{3+} + {
m H_2O_2}
ightarrow {
m Fe}^{2+} + {
m ^{*}O_2}^{-} + 2{
m H}^{+}, \quad k = 2 imes 10^{-3} \ {
m M}^{-1} \ {
m s}^{-1}$$
 (4

The low reaction rate of Fe^{3+} with hydrogen peroxide (H_2O_2) (eqn (4)) and the low regeneration rate of Fe^{2+} from Fe^{3+} limit the Fenton reaction, hindering the overall ROS regeneration efficiency. This is why the Fenton reaction requires substantial amounts of Fe^{2+} and H_2O_2 to achieve effective oxidation. For instance, industrial applications typically require high concentrations of Fe^{2+} (18–410 mmol L^{-1}) and H_2O_2 (30–6000 mmol L^{-1}) to generate sufficient 'OH for practical use. Respectively support to the support of the sup

Several strategies can be adapted to address the issues of $\mathrm{Fe^{2^+}}$ regeneration and high $\mathrm{Fe^{2^+}}$ and $\mathrm{H_2O_2}$ consumption. One of the most promising methods is using semiconductors in photocatalytic water-splitting reactions. For instance, semiconductors can directly reduce $\mathrm{Fe^{3^+}}$ to $\mathrm{Fe^{2^+}}$ through photogenerated electrons or via ${^{^\circ}\mathrm{O_2}}^-$ (eqn (5)), generated in photocatalytic water-splitting reactions. Furthermore, ${^{^\circ}\mathrm{O_2}}^-$ can generate $\mathrm{H_2O_2}$ (eqn (6)), which is critical for driving the Fenton reaction ${^{19}}$

$$\mathrm{Fe^{3+} + {}^{\bullet}\mathrm{O_2}^- \to \mathrm{Fe^{2+} + O_2}}, \quad k = 7.8 \times 10^5 \ \mathrm{M^{-1} \ s^{-1}}$$
 (5)

$$2H^+ + e^- + {}^{\bullet}O_2^- \rightarrow H_2O_2, \quad k = 2.3 \times 10^6 M^{-1} s^{-1}$$
 (6)

Therefore, semiconductor photocatalysts can address both the challenges of Fe^{2+} regeneration and the high consumption of Fe^{2+} and H_2O_2 . To harvest solar energy, the photocatalyst has to possess a small band gap. With its low band gap of 1.3 eV,⁵ multilayer MoS_2 is emerging as a promising candidate for solving Fenton-reaction issues and potentially boosting ROS generation in this reaction through photocatalysis under visible irradiation. Recently, Fe^{2+} regeneration from Fe^{3+} was significantly enhanced by adding Fe-doping oligo-layer natural molybdenite as a cocatalyst to the Fenton system.²⁰ It is also reported that H_2O_2 is produced effectively by MoS_2 in photocatalytic water-splitting reactions.²¹ Thus, we hypothesize that promoting the effective ROS generation based on the Fenton-reaction is possible by illuminating MoS_2 in $FeCl_3$ without the need for external addition of Fe^{2+} and H_2O_2 .

To verify our hypothesis, we performed the irradiation of MoS₂ on highly oriented pyrolytic graphite (HOPG) in water and aqueous 1 mM FeCl3 solution using a 532 nm laser at a power of 0.1 mW through a 100× objective in 10 seconds. Fig. 1(a) and (b) show the optical images of MoS₂ on HOPG before and after laser irradiation in distilled water where the etched area presents as a dark spot. The MoS₂ is photoetched in water with a low laser power of 0.1 mW (power density \sim 2 × 10⁴ W cm⁻²), which is approximately 100 times lower than the photoetching threshold in air.22 These results suggest that MoS₂ can be photoetched more effectively in water than in air. After laser irradiation of MoS₂ in FeCl₃ solution with the same parameters, the etching of MoS₂ is further enhanced, affecting the whole flake (see Fig. 1(c) and (d)). The large etching area within a short irradiation time (10 seconds) and with a low laser power (0.1 mW), which is significantly larger than the

Nanoscale Paper

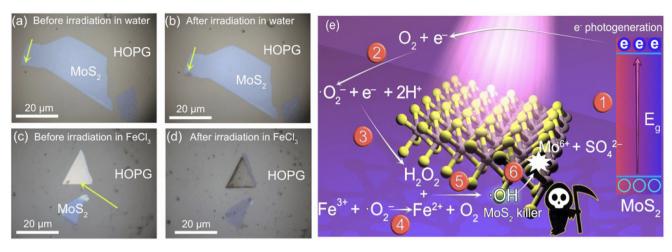


Fig. 1 Optical image of MoS₂ on HOPG: (a) before and (b) after laser irradiation in distilled water using a 532 nm laser at the power of 0.1 mW through a 100x objective in 10 seconds; and (c) before and (d) after laser irradiation in 1 mM FeCl₃ using a 532 nm laser at the power of 0.1 mW through a 100x objective in 10 seconds. (The arrows show the irradiated spots). (e) Schematic illustration of the photoetching mechanism of MoS₂ in FeCl₃ under illumination, highlighting ROS generation and the Fenton reaction for controlled etching.

laser beam diameter (~800 nm), suggests the potential of our method for the scalable production of thin MoS₂.

The schematic mechanism of MoS₂ photoetching in FeCl₃ under illumination is presented in Fig. 1(e):

- (1) Photon absorption by MoS₂ generates free electrons (e⁻) and holes (h+).
- (2) Dissolved O₂ reacts with photogenerated e⁻ to produce O_2^- .
- (3) O₂ further reacts with electrons and protons (H⁺) to produce H₂O₂ and OH⁻ (see eqn (6)). This process provides the H₂O₂ needed to fuel the Fenton reaction.
- (4) The Fe²⁺ necessary to trigger the Fenton reaction is generated either by the reduction of Fe³⁺ through superoxide radicals (see eqn (5)) or directly by photoexcited electrons in MoS₂.
- (5) The Fenton reaction occurs when Fe²⁺ reacts with the H₂O₂ generated by MoS₂, producing Fe³⁺ and 'OH radicals as products (see eqn (3)).
- (6) These strongly oxidizing 'OH radicals attack MoS₂, resulting in the formation of Mo⁶⁺ and sulfate (SO₄²⁻) ions. Consequently, ROS production and photoetching are significantly enhanced due to the generation of highly oxidizing 'OH radicals²³ (see eqn (1)).

As long as MoS2 and a light source are present, photoexcited charge carriers are generated and the system will continue to produce H₂O₂ and Fe²⁺. This allows the Fenton reaction to continue without Fe2+, H2O2 consumption and Fe2+ regeneration issues.

To confirm the generation of the 'OH radical, we performed electron paramagnetic resonance (EPR) spectroscopy. The increase in the EPR signal of the 'OH radical after irradiation of MoS₂ in the FeCl₃ solution confirms the enhanced generation of 'OH in our system and validates the photo-driven Fenton mechanism (see Fig. S1 and the explanation in the ESI†).

To visualize the effect of 'OH radicals on MoS₂ photoetching, we conducted 'OH quenching experiments using isopropyl alcohol (IPA) as a 'OH scavenger. A halogen lamp was employed as the light source for better visualization. The results presented in Fig. S2† show no observable change after immersing in FeCl₃ and FeCl₃ + IPA solution, confirming the absence of any spontaneous reaction between MoS2 and FeCl3 or FeCl₃ + IPA. Using high-magnification optical microscopy, we quantified the etched area of MoS2 in FeCl3 + IPA to be about 14 μ m². This etched area was smaller than the 33 μ m² obtained in FeCl₃ without IPA. The difference in the photoetching area is even more pronounced when considering that the illumination time was 2 minutes for the FeCl₃ solution with IPA, compared to just 10 seconds without IPA. These results demonstrate the quenching effect due to the addition of IPA as a hydroxyl radical scavenger, confirming our hypothesis of 'OH-driven photoetching of MoS₂.

Further evidence for the Fenton reaction was provided by monitoring the pH of dispersions containing MoS₂, FeCl₃, and MoS2 with FeCl3, with and without illumination of halogen lamps for 2 hours. The results showed that the pH decrease in the MoS₂ + FeCl₃ solution after halogen lamp illumination for 2 hours was smaller than the sum of the pH decreases in the MoS₂ and FeCl₃ solutions individually (see Table S2†). This observation indicates the generation of OH- ions during the Fenton reaction, which partially offset the H⁺ ions generated by MoS2 and FeCl3. The presence of OH supports the proposed Fenton reaction mechanism (eqn (3)), which includes OH and 'OH as products.

Finally, we also ruled out 'Cl radicals as the main driving force for photoetching since repeating the experiment in a NaCl solution yielded no observable changes (see Fig. S3†).

The laser power density of $\sim 2 \times 10^4 \text{ W cm}^{-2}$ in our photoetching experiment is much higher than the power density of solar irradiation on the Earth's surface ($\sim 0.14 \text{ W cm}^{-2}$). To

Paper Nanoscale

illustrate the use of visible light for large-scale, green, and lowcost photoetching, we used a halogen lamp as the light source with an emission spectrum as shown in Fig. S4.† We still observed effective photoetching of MoS2 in the FeCl3 solution under halogen lamp illumination with a power of 22.5 W, as shown in the optical images and photoluminescence (PL) intensity maps (Fig. 2(a)-(d)). The noticeable change in the flake color of MoS₂ from blue to gray, similar to that of HOPG, and the increase in PL intensity indicate the effective photoetching of MoS2 to a few-layer structure. This color change occurs because few-layer MoS2 exhibits low light absorption, reduced optical contrast compared to HOPG,24 and high PL emission. In contrast, control experiments under dark conditions showed no etching of MoS₂ by FeCl₃ (see Fig. S5†), confirming the absence of a spontaneous reaction and the crucial role of light in the photoetching process. As proposed in the mechanism, light is necessary to produce photoexcited electrons in MoS₂, which are essential for generating 'O₂-, H₂O₂ and Fe²⁺ for the Fenton reaction. The results in Fig. S6† show that no etching of MoS2 occurred in distilled water under halogen lamp illumination, likely because the low power density of the halogen lamp and short illumination time were insufficient to induce visible etching.

The normalized PL spectra of pristine mechanically exfoliated monolayer, photoetched at location 1, and multilayer MoS₂ samples reveal significant PL intensity enhancement, a blue shift, and peak broadening at location 1. The PL spectra were normalized to the E_{2g}^1 Raman peak of MoS₂. In the photoetched regions, the PL intensity increases significantly, consistent with the thinning of MoS2 and a reduction in layer

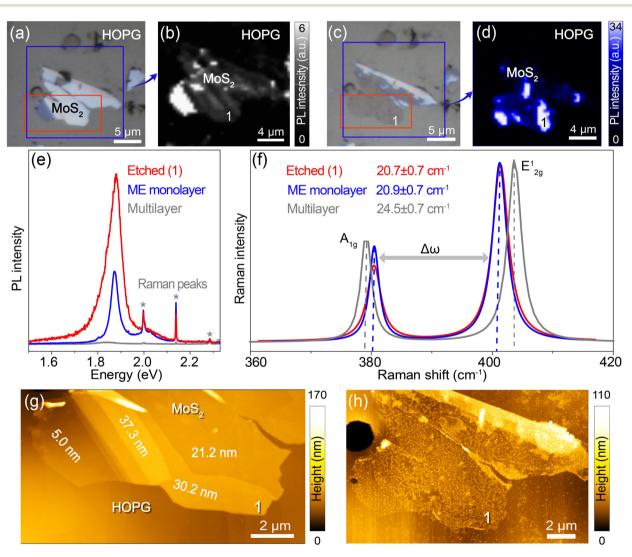


Fig. 2 (a)-(d) Optical (a and c) images and PL intensity maps (b and d) of MoS₂ before (a and b) and after (c and d) photoetching in FeCl₃ under halogen lamp illumination, showing enhanced PL intensity in the etched area consistent with layer thinning. (e) Photoluminescence (PL) spectra of mechanically exfoliated (ME) monolayer, multilayer, and etched MoS₂ at point (1) in (c) and (d) showing increased intensity after photoetching, and (f) mechanically exfoliated monolayer, multilayer, and etched MoS₂ at point (1) in (c) and (d), where the peak position difference ($\Delta\omega$) confirms monolayer thickness after photoetching. (g) AFM height profile of multilayer MoS₂ flakes on HOPG before photoetching, showing thicknesses ranging from 5 nm to 37.3 nm. (h) AFM image of MoS₂ after photoetching, revealing surface modifications.

Nanoscale Paper

thickness.¹ The blue shift and a broadening PL peak could be explained by the created defects or nanoparticles or by doping MoS₂ during photoetching.^{25,26} Our results align with a previous study,²⁵ demonstrating the blue shift in PL by defect engineering and oxygen bonding. The broadening of the PL peak could be due to the formation of the metal oxide after photoetching,²⁷ as suggested by EDX results in Fig. S7.† Fig. S8 and S9† show the PL spectra before and after photoetching. The 28-fold and 7-fold enhancement in PL intensity after photoetching clearly demonstrates the thinning of MoS₂ down to a few layers or monolayers¹ and an increase in the defect density²⁵ after halogen lamp illumination in FeCl₃.

To investigate the effect of layer thickness on photoetching, we illuminated mechanically exfoliated (ME) multilayer and few-layer MoS₂ in FeCl₃. No changes were evidenced in optical microscopy imaging of few-layer MoS₂, in contrast to the observations for multilayer MoS₂ (Fig. S10†). These results show that the photoetching rate decreases when MoS₂ is thinned to a few layers, suggesting a new pathway to control layer thickness based on light absorption without the need for an applied potential bias, unlike the electrochemical conditions used in a previous report.²⁸ The reason for this effect is the low light absorption in the visible range of few-layer MoS₂ compared to its bulk form.²⁹ Another reason could be that fast charge recombination in few-layer MoS₂, as evidenced by strong PL,²⁸ reduces the amount of 'OH radicals, leading to less effective photoetching of MoS₂.

It is well known that the peak position difference between E¹_{2g} (in-plane vibrations of Mo and S atoms) and A_{1g} (out-ofplane vibrations of S atoms) allows for the evaluation of layer thickness.³⁰ Therefore, we recorded the Raman spectra of ME MoS₂ and MoS₂ after photoetching. The results are shown in Fig. 2(f). The peak position difference between E_{2g}^1 and A_{1g} for both ME monolayer MoS2 and photoetched MoS2 at point 1 are identical, at \approx 20.9 \pm 0.7 cm⁻¹, confirming the presence of monolayer MoS2 after photoetching. This value is significantly smaller than 24.5 \pm 0.7 cm⁻¹ for multilayer MoS₂, confirming the photoetching of multilayer MoS₂. Additionally, the E¹_{2g} peak width of etched MoS_2 at point 1 is 2.9 ± 0.4 cm⁻¹, which is higher than the value of ME monolayer MoS2 (1.98 ± 0.4 cm⁻¹). The A_{1g} peak width of photoetched MoS₂ at point 1 is 3.29 ± 0.4 cm⁻¹ compared to 2.90 ± 0.4 cm⁻¹ for ME monolayer MoS2. These results demonstrate defect introduction to MoS₂ during photoetching, consistent with previous reports of MoS₂ Raman peaks widening due to defects. 31,32

Fig. 2(g) shows the atomic force microscopy (AFM) image of multilayer MoS_2 flakes on HOPG before photoetching, with thicknesses ranging from 5 nm to 37.3 nm. Fig. 2(h) presents the AFM image of MoS_2 after photoetching in $FeCl_3$ under illumination, highlighting significant surface modifications of the MoS_2 flakes. However, due to nanoparticles on the MoS_2 surface, we could not precisely determine the layer thickness. These nanoparticles significantly increase the surface roughness, which could be advantageous for applications like hydrogen production. For instance, the root mean square surface roughness of MoS_2 flakes with thicknesses of 5.0 ± 0.1 nm and

 21.3 ± 0.1 nm increased from 1.8 ± 0.2 nm and 0.6 ± 0.2 nm to 4.4 ± 0.6 nm and 5.1 ± 0.9 nm, respectively. This increase in surface roughness can be related to nanoparticle formation or high defect concentration, evidenced by Raman spectroscopy.

Additional experiments were performed on MoS_2 flakes deposited on Si/SiO_2 in $FeCl_3$. We still observed MoS_2 photoetching (see Fig. S11†), which shows the applicability of our approach regardless of the substrate. However, the photoetching efficiency of MoS_2 on HOPG is most effective^{33,34} (see Fig. S12†), which can be explained.

In summary, we demonstrated a rapid, green, low-cost etching method for production of thin MoS₂ with high defect density and nanoparticle deposition by simply illuminating MoS₂ in FeCl₃ solution using a halogen lamp with a low light intensity. The photoetching efficiency is closely linked to the generation of photoexcited charge carriers in MoS₂, producing ROS in the photocatalytic water splitting reaction and 'OH in the Fenton reaction. Therefore, the presence of photoexcited charges in MoS₂ is critical, as evidenced by the slower photoetching rate of few-layer MoS₂ compared to multilayer MoS₂, attributed to lower light absorption or faster charge recombination and no change in the optical image of MoS₂ after immersing in FeCl₃ in dark.

2.2. Spatially controlled photoetching and nanostructuring on laser-engineered defects on MoS₂

Previous research indicates that MoS_2 oxidation–dissolution or particle deposition typically initiates at the edges due to their defective nature. Our previous work demonstrated spontaneous deposition of Ag nanostructures at laser-carved defects on MoS_2 without illumination, motivating us to control MoS_2 photoetching and nanoparticle growth at laser-engineered defects. We observed that photoetching of MoS_2 in $FeCl_3$ solution initiates at the defects or edges (see Fig. S10†).

Laser processing technology offers the advantage of creating defects with precise spatial control. Therefore, we hypothesize that a laser beam can enable precise spatial control over the photoetching of MoS₂ with subsequent nanoparticle deposition at specific locations. To verify our hypothesis, a 532 nm laser was employed to irradiate MoS₂ in air to create defects selectively. Laser-carved MoS₂ flakes were then exposed to FeCl₃ under halogen lamp illumination, resulting in nanostructure growth in the etched regions (the process described in section 2.1). This process is schematically illustrated in Fig. 3(a).

Fig. 3(b–e) illustrates the progression of etching at laser-carved spots by optical and AFM imaging. Optical images show an increased diameter of etched regions; the photoetching process started from the laser-carved spots. AFM images evidence remarkable changes in height and surface roughness. Before immersion in FeCl₃, the diameter of laser-formed spots was about 650 nm, close to the laser beam diameter of approximately 800 nm. After photoetching, the diameter of the laser-carved area increased to 5 μ m (see Fig. 3(d) and (f)). Additionally, the root mean square roughness in the etched area increased to 6.5 \pm 1.5 nm, compared to 1.3 \pm 0.8 nm

Paper Nanoscale

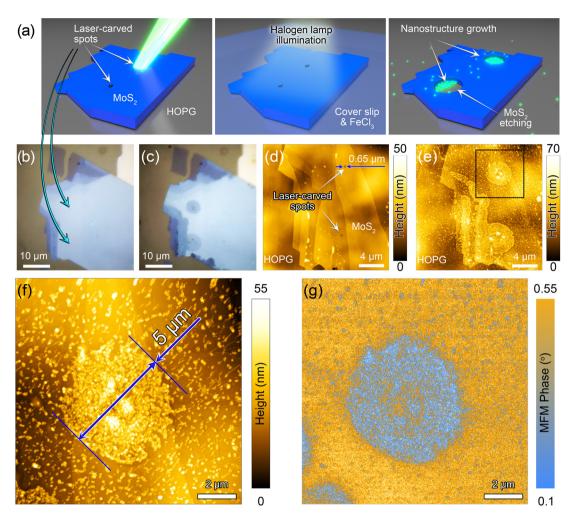


Fig. 3 (a) Schematic of the process: laser carving creates defects in MoS_2 on HOPG, followed by $FeCl_3$ immersion and illumination resulting in nanostructure growth in etched regions. (b and c) Optical images of MoS_2 before and after photoetching, showing an increase in the laser-etched region diameter. (d and e) AFM images of laser spots before (\sim 650 nm) and after (\sim 5 μ m) etching, with increased surface roughness (6.5 \pm 1.5 nm) in etched areas. (f) High-resolution AFM of the etched region. (g) MFM phase image shows enhanced magnetic contrast, confirming the formation of magnetic iron oxide nanoparticles.

before etching due to the photoetching and nanoparticle deposition. The contrast difference in the MFM phase image demonstrates differences in magnetic properties between the non-magnetic MoS_2 and the functionalized/etched spot (Fig. 3(g)), indicating the deposition of magnetic nanoparticles, likely iron oxide, that is consistent with EDX data presented in Fig. S7.†

We showed that laser-engraving technology enabled to selectively control the creation of nanoparticles in specific regions, providing a way to add magnetic properties to MoS₂ at predefined locations and to achieve spatially controlled photoetching.

2.3. Boosting the ROS production by a Fenton-like reaction with CuSO₄ for MoS₂ photoetching

We wanted to explore whether our approach could be extended to Fenton reactions using metal ions other than iron. In this context, Cu²⁺ ions, which are commonly employed for ROS generation in Fenton-like reactions, 38,39 prompted us to investigate the feasibility of selective MoS_2 photoetching in $CuSO_4$ solution. Cu^+ regeneration can be accomplished through the absorption of photoexcited electrons in the semiconductor by Cu^{2+} , reducing it to Cu^+ , as shown in eqn (7)⁴⁰ or by the reaction with $^{\bullet}O_2^-$ (eqn (8)):

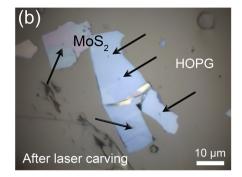
$$Cu^{2+} + e^{-} \rightarrow Cu^{+} \text{ at } 0.153 \text{ V} \text{ vs. SHE}$$

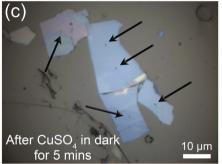
(-4.59 eV vs. E_{vac}) at pH = 7

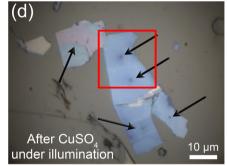
$$Cu^{2+} + {}^{\raisebox{.05cm}{$\scriptscriptstyle\bullet$}} O_2{}^- \to Cu^+ + O_2, \quad \emph{$k = 6.6 \times 10^8$ M$^{-1}$ s$^{-1}$} \end{subset}$$

$$Cu^{+} + H_{2}O_{2} \rightarrow Cu^{2+} + OH^{-} + {}^{\bullet}OH, \quad k = 4 \times 10^{5} M^{-1} s^{-1}$$
(9)

The Cu^+ reacts with H_2O_2 and O_2 in a Fenton-like reaction to produce 'OH radicals, as described in the following reactions (9).⁴¹


Nanoscale


(a) Laser carved spot


HOPG

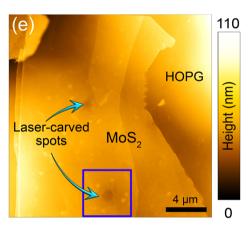

MoS₂

Photo etching in CuSO₄

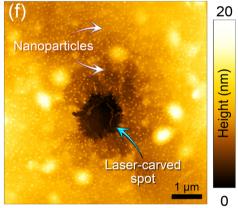


Fig. 4 (a) Schematic of photo-etching in $CuSO_4$ at laser-carved spots on $MoS_2/HOPG$ under halogen lamp illumination. (b-d) Optical images: (b) after laser carving, (c) after $CuSO_4$ exposure in the dark, and (d) after illumination, showing selective etching at defects. (e and f) AFM images: (e) etched regions on MoS_2 and (f) zoomed-in area showing Cu_2O nanoparticles, formed *via* Fenton-like reactions.

Fig. 4(a) shows a schematic of the selective photoetching process in CuSO_4 at laser-carved spots on MoS_2 . Optical images (see Fig. 4(b)–(d)) confirm the etching of MoS_2 after exposure to CuSO_4 under halogen lamp illumination, in contrast to the absence of change in the optical image without illumination. The photoetching selectively occurred at the $\text{MoS}_2/\text{HOPG}/\text{CuSO}_4$ interface or laser-carved defects. AFM images in Fig. 4(e) and (f) prove the photoetching in CuSO_4 solutions. Nevertheless, we observed Cu_2O nanoparticles resulting from Fenton-like reactions, as confirmed by Raman spectroscopy results showing the peaks from Cu_2O in the etched region (see Fig. S14†). The etching efficiency of MoS_2 in CuSO_4 is lower than that in the FeCl₃ solution (see Fig. S12†), which may be attributed to the lower activity of Cu^{2+} ions. ⁴²

Given the light-driven nature of this process, our work opens perspectives for scalability and the use of white light

illumination to drive ROS production for selective photoetching of multilayer MoS_2 to few-layer MoS_2 with high defect density and simultaneous metal oxide nanoparticle deposition. This approach could benefit applications such as catalyst creation for pollution control, including wastewater treatment.

2.4. Practical applications: enhanced HER performance

MoS₂ is a promising non-noble stable metal catalyst for the HER. ⁴³ To demonstrate the practical applications of our photochemical etching method based on the Fenton reaction, we evaluated the HER performance of MoS₂-based materials. The HER activity was assessed using electrochemical measurements under alkaline conditions (1 M KOH). Linear sweep voltammetry (LSV) curves for the graphite electrode (GE), the GE with MoS₂ (GE/MoS₂), and the GE/MoS₂ treated with FeCl₃ in

Paper Nanoscale

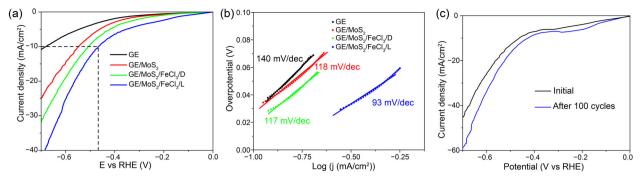


Fig. 5 (a) LSV curves of the GE, GE/MoS_2 , GE/MoS_2 / $FeCl_3$ /D, and GE/MoS_2 / $FeCl_3$ /L samples. (b) Tafel slopes derived from the curves in (a). (c) Stability test of the GE/MoS_2 / $FeCl_3$ /L sample. The catalyst is still stable after 100 cycles.

the dark (GE/MoS₂/FeCl₃/D) and under halogen lamp illumination (GE/MoS₂/FeCl₃/L) are shown in Fig. 5. After depositing MoS₂ on the GE, the HER performance increases, indicating the high catalytic activity of MoS2. Subsequent treatment of GE/MoS2 with FeCl₃ under dark conditions further improves performance, as reflected by the high current density of GE/MoS₂/FeCl₃/D (see Fig. 5(a)), likely due to iron oxide particle deposition. The sample prepared under illumination, GE/MoS₂/FeCl₃/L, shows the best performance of all, as evidenced by an overpotential shift to a less negative value and a significantly higher current density across the entire potential range, indicating a more efficient hydrogen generation process. Defect creation and iron oxide nanoparticle formation via the photochemical Fenton reaction lead to the formation of additional active sites for the HER, resulting in a potential shift from -0.7 V (GE) to -0.47 V (GE/MoS₂/ FeCl₃/L) at a current density of 10 mA cm⁻². Thus, our simple and scalable approach for modifying the electrode surface effectively improves the electrocatalytic performance of the electrode for the HER.

To understand the elementary steps in the HER, Tafel slopes are derived from linear portions of Tafel plots fitted to the equation $\eta = b \times \log(j) + a$, where η is the overpotential (V), j is the current density (mA cm⁻²), and b is the Tafel slope in mV dec⁻¹. Three possible reaction steps governing HER kinetics are as follows: the Volmer reaction ($b \approx 120$ mV), the Heyrovsky reaction ($b \approx 40$ mV), and the Tafel reaction ($b \approx 30$ mV). For the GE, GE/MoS₂, GE/MoS₂/FeCl₃/D, and GE/MoS₂/FeCl₃/L, the Tafel slopes are 140, 118, 117, and 93 mV dec⁻¹, respectively (see Fig. 5(b)). The GE/MoS₂/FeCl₃/L exhibits the smallest Tafel slope of 83 mV dec⁻¹, indicating a Volmer–Heyrovsky reaction. Additionally, after 100 HER cycles, the GE/MoS₂/FeCl₃/L sample maintained consistent HER performance, demonstrating good electrochemical stability (see Fig. 5(c)).

3. Conclusion

This work presents a simple, novel, scalable, and environmentally friendly approach for the spatially controlled etching and nanoparticle functionalization of multilayer MoS₂ to few-layer

MoS₂ with high defect density, achieved by low-intensity halogen lamp illumination in FeCl₃ and CuSO₄ solution. Based on Fenton reactions, this method, validated by Raman spectroscopy, scanning probe microscopy methods, optical microscopy, scavenging experiments, and scanning electron microscopy with elemental mapping, enables light-driven MoS₂ thinning, defect creation and nanoparticle functionalization. We elucidated the mechanism behind photochemical defect formation and thinning based on the generation of strongly oxidizing 'OH radicals through Fenton reactions. Furthermore, we demonstrated the spatially selective functionality through the simultaneous growth of magnetic nanoparticles at predetermined locations using laser engraving technology. Our approach improved MoS2 performance in the HER by introducing defects and metal oxides. In conclusion, this work provides a novel strategy for thinning of MoS₂ to a monolayer, introducing defects, and achieving metal functionalization in a single simple processing step compatible with large-scale production, offering potential benefits for (photo)catalysis applications in and optoelectronics applications.

4. Materials and methods

4.1. Materials

MoS₂ flakes were obtained through mechanical exfoliation of natural bulk 2H-MoS₂ crystals and subsequently deposited on four substrates: highly oriented pyrolytic graphite (HOPG) (NT-MDT, Russia), Si/SiO₂, indium tin oxide (ITO), and polydimethylsiloxane (PDMS) (Gel@Pak, Korea). The FeCl₃ salt was purchased from Sigma-Aldrich and used without further purification.

4.2. Atomic force microscopy

Surface morphology and electronic properties were characterized using an NTEGRA PRIMA atomic force microscope (NT-MDT, Russia). Topography and Kelvin probe force microscopy (KPFM) measurements were performed using NSG10 and NSG10/Pt tips (NT-MDT, Russia), while magnetic force microscopy was conducted using MFM01 tips (NT-MDT, Russia).

Nanoscale Paper

4.3. Photoluminescence and Raman spectroscopy

Photoluminescence (PL) and Raman spectra were recorded using a Raman spectrometer (NT-MDT SI, Russia). All spectra were recorded using a 532 nm laser with a 100× objective with 1800 or 150 mm⁻¹ gratings for Raman and PL spectra, respectively. Laser power after the objective was 0.1 mW.

4.4. Scanning electron microscopy (SEM)

SEM images and elemental maps were obtained using an *in situ* analytical scanning electron microscope, TESCAN MAGNA (TESCAN, Czech Republic), at 10 kV.

4.5. Laser carving for defect creation

Laser carving of MoS₂ flakes was performed using a 532 nm laser with the power of 12 mW after a 100× objective in air.

4.6. Photoetching experiment

A 10 μ L drop of the aqueous solution of the investigated salt was deposited onto the MoS_2 flake and covered with a glass coverslip to ensure uniform solution distribution and enable optical imaging. Samples were illuminated using a halogen lamp, Schott ACE I A20510 (Schott, Germany), at the power of 22.5 W, focused through a 100× objective. The spectrum of the halogen lamp is provided in Fig. S4.† After illumination, the coverslip was removed, and samples were rinsed with distilled water. The terms of photooxidation and photoetching are the same in our case, as photooxidation leads to thinner MoS_2 flakes.

4.7. Electron paramagnetic resonance (EPR) spectroscopy experiments

5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin-trapping agent. MoS_2 was dispersed in water to obtain a concentration of 2.5 mg mL⁻¹. This dispersion was mixed at a 1:1 volume ratio with 0.1 mM FeCl₃. This concentration of FeCl₃ minimizes interference with DMPO. A high amount of DMPO (0.10 g) was added to stabilize radicals and limit oxidation by Fe³⁺.

4.8. 'OH scavenging experiment

The same experiment as the photo-etching experiment was conducted using a 10 μ L drop of a mixed solution containing 1 mM FeCl₃/98% 2-isopropanol (IPA) at a volume ratio of 1:1.

4.9. pH measurement experiment

The pH values of 0.05 M MoS₂ dispersion, 0.05 M FeCl₃ solution and 0.05 M MoS₂/0.05 M FeCl₃ dispersion were measured by a colorimetric method using litmus (Aquanatura, Germany).

4.10. Electrochemical measurements

A graphite electrode (GE) was prepared following a previously reported protocol. 46 The GE/MoS $_2$ working electrode was prepared by drop-casting 10 μL of MoS $_2$ solution (0.01 g of MoS $_2$ per mL of ethanol) onto the GE and allowing it to dry. Subsequently, a small volume (<10 μL) of chloroform was applied to improve adhesion, followed by drying at room temperature (~10 minutes) and then at 49 °C for an additional 10 minutes.

GE/MoS₂/FeCl₃/D was prepared by immersing the GE/MoS₂ electrode in 1 mM FeCl₃ for 15 minutes. GE/MoS₂/FeCl₃/D was prepared by immersing the GE/MoS₂ electrode in 1 mM FeCl₃ illumination halogen lamp for 15 Electrochemical HER activity and stability tests were conducted using a three-electrode cell configuration connected to a potentiostat (Corrtest, China). An Ag/AgCl (3.0 M NaCl) and a platinum wire were used as reference and counter electrodes, respectively. HER performance was evaluated in aqueous 1.0 M KOH (pH 13.7). Cyclic voltammetry (CV) and LSV were performed by scanning from -0.9 V to -1.8 V vs. Ag/AgCl at a scan rate of 25 mV s⁻¹. All potentials were converted into the reversible hydrogen electrode (RHE) scale using the following formula: $E_{RHE} = E(Ag/$ AgCl) + 0.059 pH + 0.209. Electrochemical stability was tested over 100 CV cycles across the specified potential range.

Author contributions

Tuan-Hoang Tran: methodology, investigation, formal analysis, visualization, writing – original draft, and review & editing. Raul D. Rodriguez: conceptualization, methodology, investigation, formal analysis, visualization, writing – original draft, and review & editing. Aura S. Garcia: methodology, investigation, formal analysis, visualization, writing – original draft, and review & editing. Tao Zhang: methodology and review & editing. Qiang Ma: investigation and review & editing. Ranran Wang: conceptualization, funding acquisition, and review & editing. Evgeniya Sheremet: conceptualization, formal analysis, methodology, funding acquisition, writing – original draft and review & editing.

Data availability

The data that support the findings of this study are available from the corresponding author, Raul D. Rodriguez, upon reasonable request.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge funding by RSF Grant No. 23-42-00081. Ranran Wang thanks support from the National Natural Science Foundation of China (Grant No. 62261136551). Q. M. is thankful to the China Postdoctoral Science Foundation (2024M753340) and the Postdoctoral Fellowship Program of CPSF (Grant Number GZC20232796) for the financial support. The authors also gratefully acknowledge Maksim Fatkullin and Pavel Petunin from Tomsk Polytechnic University for fruitful discussions and comments on the manuscript.

Paper Nanoscale

References

- 1 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli and F. Wang, Nano Lett., 2010, 10, 1271-1275.
- 2 J. Jiang, Z. Chen, Y. Hu, Y. Xiang, L. Zhang, Y. Wang, G.-C. Wang and J. Shi, Nat. Nanotechnol., 2021, 16, 894-901.
- 3 Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv and K. Świerczek, ACS Nano, 2016, 10, 8526-8535.
- 4 A. Taffelli, S. Dirè, A. Quaranta and L. Pancheri, Sensors, 2021, 21(8), 2758.
- 5 Z. Li, X. Meng and Z. Zhang, J. Photochem. Photobiol., C, 2018, 35, 39-55.
- 6 D. Wei, B. Wu, Y. Guo, G. Yu and Y. Liu, Acc. Chem. Res., 2013, 46, 106-115.
- 7 S. Bai, N. Zhang, C. Gao and Y. Xiong, Nano Energy, 2018, 53, 296-336.
- 8 H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov and Y. Cui, Nano Res., 2015, 8, 566-575.
- 9 P. Zhang, H. Xiang, L. Tao, H. Dong, Y. Zhou, T. S. Hu, X. Chen, S. Liu, S. Wang and S. Garaj, Nano Energy, 2019, 57, 535-541.
- 10 S. H. Choi, S. J. Yun, Y. S. Won, C. S. Oh, S. M. Kim, K. K. Kim and Y. H. Lee, Nat. Commun., 2022, 13, 1484.
- 11 K. K. Amara, L. Chu, R. Kumar, M. Toh and G. Eda, APL Mater., 2014, 2, 092509.
- 12 Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang, J. Bai, W. Zhao, L. Sun, X. Wang and Z. Ni, ACS Nano, 2013, 7, 4202-4209.
- 13 B.-C. Tran-Khac, R. M. White, F. W. DelRio and K.-H. Chung, Nanotechnology, 2019, 30, 275302.
- 14 D. Ghim, P.-I. Chou, S. H. Chae and Y.-S. Jun, Environ. Sci. Technol., 2021, 55, 13759-13769.
- 15 L. Li, Q. Han, L. Wang, B. Liu, K. Wang and Z. Wang, Chem. Eng. J., 2022, 440, 135866.
- 16 E. Brillas, I. Sirés and M. A. Oturan, Chem. Rev., 2009, 109, 6570-6631.
- 17 X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.-P. Sun, W. D. Wu and Z. Wu, J. Mater. Chem. A, 2020, 8, 15513-15546.
- 18 M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez and S. Esplugas, Appl. Catal., B, 2004, 47, 219-256.
- 19 T. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu and K. Domen, Nat. Commun., 2022, 13, 1034.
- 20 R. Zhang, Z. Liu and T. Chen, Photochem. Photobiol., 2024, 100, 1745-1758.
- 21 H. Song, L. Wei, C. Chen, C. Wen and F. Han, J. Catal., 2019, 376, 198-208.
- 22 T.-H. Tran, R. D. Rodriguez, N. E. Villa, S. Shchadenko, A. Averkiev, Y. Hou, T. Zhang, A. Matkovic and E. Sheremet, J. Colloid Interface Sci., 2024, 654, 114-123.
- 23 S. Gligorovski, R. Strekowski, S. Barbati and D. Vione, Chem. Rev., 2015, 115, 13051-13092.
- 24 T.-H. Tran, R. D. Rodriguez, D. Cheshev, N. E. Villa, M. A. Aslam, J. Pešić, A. Matković and E. Sheremet, Appl. Surf. Sci., 2022, 604, 154585.

- 25 H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang and Z. Ni, ACS Nano., 2014, 8, 5738-5745.
- 26 S. Mouri, Y. Miyauchi and K. Matsuda, Nano Lett., 2013, 13, 5944-5948.
- 27 L. Chen, M. Arshad, Y. Chuang, C.-W. Chen and C.-D. Dong, Mater. Sci. Semicond. Process., 2023, 167, 107780.
- 28 S.-S. Wu, T.-X. Huang, K.-Q. Lin, X. Yao, J.-T. Hu, D.-L. Tang, Y.-F. Bao and B. Ren, 2D Mater., 2019, 6, 045052.
- 29 G. A. Ermolaev, Y. V. Stebunov, A. A. Vyshnevyy, D. E. Tatarkin, D. I. Yakubovsky, S. M. Novikov, D. G. Baranov, T. Shegai, A. Y. Nikitin, A. V. Arsenin and V. S. Volkov, Npj 2D Mater. Appl, 2020, DOI: 10.1038/ s41699-020-0155-x.
- 30 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater., 2012, 22, 1385-1390.
- 31 S. Fu, K. Kang, K. Shayan, A. Yoshimura, S. Dadras, X. Wang, L. Zhang, S. Chen, N. Liu, A. Jindal, X. Li, A. N. Pasupathy, A. N. Vamivakas, V. Meunier, S. Strauf and E.-H. Yang, Nat. Commun., 2020, 11, 2034.
- 32 N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard and S. I. Khondaker, J. Phys. Chem. C, 2014, 118(36), 21258-21263.
- 33 H. Li, K. Yu, C. Li, Z. Tang, B. Guo, X. Lei, H. Fu and Z. Zhu, Sci. Rep., 2015, 5, 18730.
- 34 L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang and T. Palacios, Nano Lett., 2014, 14, 3055-3063.
- 35 T. Liang, W. G. Sawyer, S. S. Perry, S. B. Sinnott and S. R. Phillpot, J. Phys. Chem. C, 2011, 115, 10606-10616.
- 36 Z. Wang, Y.-J. Zhang, M. Liu, A. Peterson and R. H. Hurt, Nanoscale, 2017, 9, 5398-5403.
- 37 Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li and H. Y. Yang, Sci. Rep., 2013, 3, 1839.
- 38 T. T. M. Nguyen, H.-J. Park, J. Y. Kim, H.-E. Kim, H. Lee, J. Yoon and C. Lee, Environ. Sci. Technol., 2013, 47, 13661-13667.
- 39 A. N. Pham, G. Xing, C. J. Miller and T. D. Waite, J. Catal., 2013, 301, 54-64.
- 40 P. Vanysek, CRC handbook of chemistry and physics, 2000, vol. 8, pp. 8-33.
- 41 J. Li, A. N. Pham, R. Dai, Z. Wang and T. D. Waite, J. Hazard. Mater., 2020, 392, 122261.
- 42 H. Lee, J. Seong, K.-M. Lee, H.-H. Kim, J. Choi, J.-H. Kim and C. Lee, J. Hazard. Mater., 2018, 344, 1174-1180.
- 43 Y. Cao, ACS Nano, 2021, 15, 11014-11039.
- 44 T. Shinagawa, A. T. Garcia-Esparza and K. Takanabe, Sci. Rep., 2015, 5, 13801.
- 45 B. Tian, L. Sun, Z. Zeng and D. Ho, J. Mater. Chem. A.
- 46 A. M. Surkov, R. G. Queiroz, R. S. Rinco, A. G. Rios, I. G. R. Gutz, A. L. B. Baccaro and L. Angnes, Talanta, 2021, 223, 121780.