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ABSTRACT

One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive
detection systems is now more critical than ever. While sensors’ sensitivity, portability, selectivity,
and low cost are crucial, new ways to couple synergistic methods enable the highest performance
levels. This review article critically discusses the synergetic combinations of optical and electro-
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chemical methods. We also discuss three key application fields—energy, biomedicine, and environ-
ment. Finally, we selected the most promising approaches and examples, the open challenges in
sensing, and ways to overcome them. We expect this work to set a clear reference for developing
and understanding strategies, pros and cons of different combinations of electrochemical and

optical sensors integrated into a single device.

1. Introduction

Nowadays, a breakthrough in sensing technologies is the
highly sensitive and selective multimodal chemical detection
with no labeling or functionalization. Moreover, rapid and
accurate analysis is critical for forensic, security, and health
and natural emergencies. Here, we demonstrate that electro-
chemical methods (ECM) coupled with surface-enhanced
Raman spectroscopy (SERS) is a promising dual-sensing
combination to meet these challenges since both groups of
methods can be portable, accurate, and fast. Furthermore,
the simultaneous use of these approaches allows the analysis
of complex multi-component probes with the data serving
as each other’s control. Moreover, each of them can induce
specific chemical modifications that can, in turn, be moni-
tored by the other method providing unique insights into
photocatalytic and electrochemical reaction mechanisms, as
well as applying a potential bias to further enhance
SERS signals.

ECM have been combined with several optical methods
such as luminescence,!"! fluorescence microscopy,? surface
plasmon resonance,”®! and surface-, tip-, and shell-isolated
nanoparticle-enhanced Raman spectroscopy (SERS, TERS,
and SHINERS, respectively).*"®) These combinations reveal
crucial information about electrochemical phenomena such
as reaction mechanism and intermediates,l”! surface and
electrocatalyst homogeneity, and heterogeneity.!® Apart
from understanding the nature of the processes, optical
methods!”’ have been used to enhance electrochemical

sensors’ performance and electron transfer,/'>'" while the
electrochemical sensor itself consists of a receptor, analyte,
and electrode, working as a transducer to convert the reac-
tion between an electrode and analyte into an elec-
trical signal.

Despite multiple options, some methods are preferable to
use in conjunction because of their exclusive advantages.
For instance, Raman spectroscopy provides molecular fin-
gerprints of the sample components but accurate quantita-
tive estimation is challenging. On the other hand, ECM
gives limited chemical specificity but provides quantitative
measurements by following the changes in the current
response. However, this already beneficial coupling still
could be improved. In the 70s, Fleishmann and coworkers
discovered inexplicably high Raman signal intensity of pyri-
dine on Ag/AgCl electrodes during an electrochemical
experiment.!'?! This effect was later named surface-enhanced
Raman spectroscopy (SERS) and was explained by plasmon
excitation on the rough silver surface. The SERS sensor is
composed of a SERS-active substrate (generally with the
incorporation of noble metals), which amplifies the Raman
signal from the adsorbed analyte molecules with the detec-
tion limits down to the level of individual molecules. It
launched a new era of research involving nanoparticles
(NPs) to enhance Raman signals that conveniently increase
the sensitivity of electrochemical detection. Currently, elec-
trochemistry coupled with SERS (EC-SERS) is typically used
for detecting and explaining chemical phenomena or as a
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way to improve device sensitivity. Moreover, combining
ECM with SERS is an efficient way to monitor electrochem-
ical reactions at ultra-low concentrations. For example, an
electrical potential can promote adsorption of target analytes
to the surface of noble metals, increasing the number of
analytes in electromagnetic hotspots and thereby increasing
the SERS limit of detection (LOD).

There are several reviews focused on combinations of
electrochemical and optical methods,!”"*™*® including the
recent one focusing on EC-SERS in analytical applica-
tions.!'”) However, these works have either focused on (1)
improving the sensitivity of one method by employing
another one or (2) understanding the sensing mechanisms
and surface reactions in the sensing process by complemen-
tary approaches. Moreover, there are no systematic studies
on the capabilities and limits of combining these two
approaches. Previous reviews highlight the dual transduction
by optical and electrochemical techniques rather than meth-
ods’ complementarity and interaction.

This review focuses on the dual transduction by electroa-
nalytical techniques and SERS. We emphasize the interplay
between the two techniques and show their implementation
in biomedical, environmental, and energy applications.
Additionally, we discuss the effect of ECM on SERS per-
formance and vice-versa.

2. Methods description

Conceptually, combining electrochemical methods and SERS
is highly beneficial, but designing an experiment suitable for
both methods based on different working principles is chal-
lenging. Furthermore, the joint use of the two approaches
requires a deep fundamental understanding of the physico-
chemical processes and specific experimental implementa-
tion discussed in this section.

2.1. Basics of electrochemical methods

Electrochemical methods are nowadays widely used in fun-
damental research and commercial applications. Many
research papers focus on electrochemical sensors and their
applications, emphasizing their portability, ease of use, high
sensitivity, and low cost.'*”) Besides addressing fundamental
aspects in academic research, commercial electrochemical
sensors are also available. These sensors are applied to detect
arsenic (FREDsense), nitrate, oxygen, and phosphate
(Zimmer and Peacock), ammonia, fluorine, and chlorine in
water (Scan Messtechnik GmbH), as well as to monitor glu-
cose, gasses, and metabolites (Abbott) in blood, to name
a few.

Electrochemistry is the interplay between electricity and
chemistry, occurring on an electronic|ionic conductor inter-
face (electrode). The quantification of currents provides
indirect information about the concentrations of electroac-
tive species. Namely, in electrochemistry, the measured cur-
rent is directly proportional to the rate of an
(electro)chemical reaction, which, on the other hand, is pro-
portional to the concentration of reactants. In turn, the

voltage related to the change of the Gibbs free energy of an
electrochemical reaction provides information about thermo-
dynamics and, thus, the chemical identity of reactants, but
also the concentration, as in potentiometric measurements
(such as the measurement of pH).

The electronic/ionic conductor interface (the electrode in
its true meaning) is a complex unit. The extreme electric
fields of 10° V. m™", which are almost impossible to form in
a laboratory, are taking place at the electrode. It happens
because of the formation of an electric double layer (EDL)
at the interface between the electrode surface and the analyte
to balance the electrode’s surface charge.'”!) EDL thickness
and structure depend on the electrolyte composition and
concentration and could be described using the Stern,
Helmholtz, and Gouy-Chapman models.?*?*! EDL is com-
posed of an inner Helmholtz layer or Stern layer, outer
Helmbholtz layer, and diffuse layer, while the Stern layer is
composed of solvent molecules (water) and specifically
adsorbed ions. Water molecules, being dipoles by nature,
orient themself in accordance with the charge on the elec-
trode surface. The outer Helmholtz layer consists of solvated
ions coming from the solution operating at a distance lim-
ited by the size of the solvated shell. After the outer
Helmbholtz layer, there is the diffuse layer wherein the free
ions can easily move inside the solution. Any electrochem-
ically active species has to get through the EDL and
approach the electronic conductor surface to undergo the
electrochemical transformation. This process, in most cases,
involves a direct interaction of electroactive species with the
surface of an electronic conductor.

In a potential controlled technique, an electric potential
applied to the electrode drives the chemical reactions, and
the resulting current is measured. Colloquially, the electric
potential is analogous to the wavelength in optical set-
ups.***! One of the conditions to apply any electrochem-
ical techniques is that the analyte must be electro-active so
that the redox reactions can occur. The number of electrons
transferred during the redox reactions at a specific applied
potential increases the current, proportional to the concen-
tration of electroactive species in the electrolyte solution.
Two key processes determining the rate of redox reactions
are (1) mass transport from the bulk electrolyte to an elec-
trode and (2) electron transfer at an electrode to the electro-
active species or vice versa (Figure 1). (1) The mass
transport of electroactive species and ions from bulk to the
electrode surface can happen by diffusion, convection, and
migration. The dominance of one phenomenon over the
other entirely depends on the experimental conditions and
the chemical nature of an electrolytic solution.’*®! (2) The
electron transfer takes place at the electrode/electrolyte inter-
face when the overpotential reaches the activation energy.
Overpotential value is defined by the electrode material, its
surface properties, and the analyte composition.

A typical setup for electrochemical kinetics and analytical
measurements consists of three electrodes: working electrode
(WE), counter electrode (CE), and reference electrode (RE),
as shown schematically in Figure 1. Such a three-electrode
setup can be made either in an electrochemical cell or in a
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Figure 1. Schematic illustration of the experimental setup for electrochemical sensors. A three-electrode setup can be implemented in an electrochemical cell or on
the surface of a screen-printed electrode. WE, CE, and RE are contacted to a potentiostat so that various EC techniques can be applied (e.g., square-wave voltamme-
try (SWV), electrochemical impedance spectroscopy (EIS), or cyclic voltammetry (CV)).

compact form using, for example, screen-printed electrodes
(SPE). The electrodes are connected to the potentiostat,
which controls the voltage or current depending on the type
of measurement. Electrochemical reactions occur at the sur-
face of WE when a varying or constant potential/current is
applied, allowing the detection of the target analytes from
the current/potential response. CE closes the electrical cir-
cuit with the WE, allowing the current to flow.”””) In a
three-electrode setup, there is no current flow through the
RE; thus, RE is at a constant potential. Hence, it is used to
measure the potential of the WE during its polarization in
an electrochemical experiment./®! Electrochemical methods
are classified into potentiometric,”?”! coulometric,”® volta-
metric,”"! and amperometric,*? based on the type of input
signal applied and/or measured quantity such as current,
voltage, or charge to quantify the analyte concentration
indirectly or to understand its reactivity on the surface.
Most of the electrochemical measurements rely on the appli-
cation of voltametric techniques, with cyclic voltammetry
(CV) being the most widespread in the study of fundamen-
tal electrochemical processes and mechanisms, as well as in
sensing applications. In CV, the potential is swept from a
chosen point with a constant sweep rate (usually tens of mV
per second), to a given vertex potential and back. Without
going into the theory of CV, we note that the current
response can be used to identify the nature of the rate-deter-
mining step, rate constant, concentration, the occurrence of
a chemical reaction before or after the charge transfer step,
etc. Besides CV, other techniques, like chronoamperometry
of chronopotentiometry, where current/potential is meas-
ured upon constant potential/current applied to the WE are
frequently in use. These approaches are particularly insight-
ful for the investigation of electrochemical systems which
operate under similar conditions, like a battery discharge
under constant current or voltage.

The use of EC methods helps detect the target species in
the analyte and quantitatively characterize the electrode

surface, electrolyte, and electrode-electrolyte interactions. In
this regard, there have been several studies on using EC to
detect a wide range of contaminants, such as heavy met-
als,*>** as well as pesticides,*”! nitrogen species,*®! cancer
biomarkers,®”®) viruses,’® biomolecules (such as H,O,,
glucose and so on),*” arsenic species,'*!! and biologically
active biogenic amines.*?) At present, EC helped to achieve
very low limits of detection in the order of nano- to
pico-moles.

Nevertheless, electrochemical sensing alone has a few
inherent drawbacks.

1. The sensitivity and selectivity of the sensor are limited
by the choice of electrode material or material used to
modify its surface, which in turn depends on the target
molecule. In other words, the expected analyte compos-
ition must be known in advance. In addition, the pres-
ence of interfering compounds in the solution further
hampers the sensor performance. WE for analytical
applications can be based on carbon nanomaterials,*’!
metallic NPs,*¥ complex 2D nanostructures,'*>*°! metal
oxides,!*”! biomolecules,****) or polymers, their
composites, or more complex architectures.

2. The performance and repeatability of the electrochem-
ical sensor are highly dependent on the structure of the
electrode surface.®™? Thus, advanced strategies in
nanotechnology to modify the electrode surface must be
integrated to improve the sensors” repeatability.!*

3.  Electrochemical sensors tend to age and are fouled rap-
idly in complex media,®® while the rate of aging
depends on the electrode material. New strategies
should be developed to prolong the sensor lifetime by
implementing anti-fouling nanomaterials and electrode
regeneration techniques. [54:55]

[50]

The above-mentioned complications must be mitigated to
develop devices with higher repeatability and longer lifetime.
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Figure 2. a) Energy diagrams for electron transitions with different types of
scattering; b) Schematic principle of plasmonic enhancement of Raman sig-
nal (SERS).

Moreover, combining EC with other transduction techniques
will enable us to understand the surface chemistry and
changes occurring on the electrode surface during measure-
ments. The additional information can improve the sensor
performance while alleviating some inherent drawbacks
related to selectivity (Figure 1).

If ECM is combined with other approaches, like Raman
spectroscopy, it is necessary to properly match the time
resolution and selectivity of these techniques. In other
words, if there is an intention to detect products of an elec-
trochemical reaction or their intermediates, the second tech-
nique must be capable of capturing their appearance during
an electrochemical reaction. However, in contrast to chem-
ical reaction systems, where the reaction rate is determined
by the concentration of reactants, temperature, and pressure,
in electrochemical systems there is an additional control
parameter. This is the electrode potential, whose precise
control, easily done using modern electrochemical devices,
finely tunes the rate of electrochemical reaction. For this
reason, EC methods seem perfect for combining with other
analytical techniques.

2.2. Basics of Raman spectroscopy

Raman spectroscopy is one of the most widespread, specific,
nondestructive, rapid, and informative physicochemical
methods for material analysis. The underlying process of
this technique, the Raman scattering effect, was discovered
by C. V. Raman in 1928. Raman measurement provides a
vibrational spectrum of the analyte, which can be considered

as its “fingerprint” and allows its identification.”® Being a
widely-used characterization procedure, Raman is readily
applicable to different classes of materials, including poly-
mers, superconductors, semiconductors, carbonaceous,
environmental materials, and others.””) With the help of
Raman spectroscopy, it became possible to analyze complex
molecules and molecular systems like pharmaceutical®”! and
biomedical ones.'*®! One of the essential biological applica-
tions of Raman is distinguishing cancerous cells from nor-
mal tissue.>”)

There are three distinct light scattering processes.
Statistically, most photons would undergo elastic or Rayleigh
scattering, i.e., they will be scattered without energy change.
The two types of Raman scattering—with an energy loss and
energy gain—provide information about the material struc-
ture. Stokes scattering is attributed to the fact that the
energy of the scattered photon hvg is lower than that of the
incident one hv;, while anti-Stokes scattering hvg is larger
than hv;. The energy change is defined by the sample’s
unique structure of vibronic states that provide a specific
and informative spectral “fingerprint” (Figure 2a).

However, the Raman process has a very low scattering
probability that results in low signal intensity. That affects
the spectra quality and LOD that could be obtained
straightforwardly.

The most efficient way to overcome this is through sur-
face-enhanced Raman spectroscopy that uses plasmonic NPs
to amplify Raman signal intensity significantly. The large
signal increase was initially attributed to the enlarged surface
area of the electrochemically roughened silver electrode.
Later on, it was postulated that the Raman signal enhance-
ment has an electromagnetic origin.'®”’ Nowadays, it is gen-
erally accepted that two mechanisms enhance the Raman
signal in SERS. They are the electromagnetic (EM) mechan-
ism and the chemical (C) mechanism, with a slight impact
on the enhancement from C and mostly from EM. The EM
mechanism originates from the coherent oscillation of con-
duction electrons in noble metal nanostructures that induce
the spatial confinement and amplification of the incident
electric field. The C mechanism is related to the change in
the Raman scattering efficiency due to molecule/metal inter-
action (Figure 2b). In addition to signal amplification, the
relative molecular orientation with respect to the hotspot
and electric field can influence the relative intensity of dif-
ferent Raman peaks!®"! (Figure 2).

SERS measurements could be performed by mixing an
addition of analyte to the colloidal NPs suspension, then
depositing the mixture onto any substrate,*>®*! or the
deposition of colloidal NPs directly on the analyzed sample.
For example, onto a tea leaf to detect pesticides on its sur-
face.!® Another common way is the deposition of a target
analyte to the prepared SERS active substrate.[*>¢°!

So far, SERS has been successfully used to detect heavy
metals in water,”*® bacteria and biomolecules,!*>**! viral
antigens,”®! drugs,”" organic and inorganic molecules,!”?!
and pesticides.”*) With the help of optical forces, SERS
could be used to detect molecules in liquid environ-
ments. 747" Among the other interesting approaches, a
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Type of EC-SERS combination

Description Examples in literature

Equivalent combination

Both methods are applied for detection equally

[93,94,137,138,148,150,190,198]

and independently (sequentially or
simultaneously)

Complementary combination

Advantages of one of the methods overcome

[96-98,139]

drawbacks of another (e.g., SERS—as qualitative
method, EC—as quantitative method)

EC enhancing SERS

EC is used as a method to increase the efficiency

[104,199-201]

of SERS detection

SERS monitoring of EC

SERS is applied for monitoring

[105,108,109,143,202]

electrochemical reactions

EC-SERS (SHINERS) monitoring of
photocatalytic reactions

EC-SERS(SHINERS) for monitoring surfaces plasmon-
induced SPR-induced (photocatalytic) reactions

[99,112-117]

thermophoretically driven assembly of metallic NPs for
SERS detection was recently developed.”®7® As with most
sensing techniques, LOD is the key figure characterizing
SERS performance in detection. For example, in the case of
pesticides detection in food samples, it was possible to
achieve picomoles and ppb LOD.”!

SERS experiences challenges similar to EC measurements:

1. SERS is less prone to surface fouling because Raman
spectroscopy gives fingerprint spectra, meaning that the
signal from both fouling molecules and target analytes
can be distinguished. Still, SERS substrates are rarely
reused® 2 due to unavoidable contamination of the
surface and the challenges of refreshing it.

2. Just like EC, SERS is sensitive to the analyte volume
close to the surface. Thus, it is imperative to bring the
target molecules to the surface by functionalization
(modification). For example, one of the common ways
to verify the SERS activity is using thiols as target mole-
cules since thiols have a very strong affinity toward
noble metals used in SERS substrates.!®>**! Often, anti-
bodies and aptamers are used to bind biological mole-
cules, recently imprinted polymers have been
introduced, metal-organic frameworks are employed for
concentrating analytes close to the SERS active sur-
face.!®%) Also, SERS is not highly informative for
heavy metal detection, even though it could be done
indirectly. In this case, SERS detection is performed by
following the signal changes in pre-assembled linker
molecules.”?! A similar approach is used when a target
molecule has a very low signal.l”?!

3. SERS is extremely sensitive to the nanoscale surface
structure since the highest contribution to the signal
comes from the areas with the strongest electric field
enhancement, the so-called “hot spots.” The enhance-
ment depends exponentially on the spacing between
neighboring nanostructures.’®”) In combination with the
irreproducibility of the optical focusing, spacing strongly
affects signal intensity,®®! making it one of the critical
issues preventing SERS from becoming a commercially
adopted sensing method. The ways to improve SERS
reproducibility include high-precision nanofabrication
technologies,****! self-assembly approaches that fix the
distance between NPs,®'! or the use of internal refer-
ence molecules to the analyte’s signal
intensity. 52

calibrate

To sum up, both ECM and SERS suffer from similar
drawbacks; fortunately, some of each can be compensated
by combining the two approaches as described below.

3. Combination of EC and SERS

In the simplest case, EC and SERS contribute to the detec-
tion equally (they both provide qualitative and/or quantita-
tive analysis) synchronously but independently (equivalent
combination, Table 1).°®! In an equivalent combination,
optical and electrochemical spectra provide complementary
information and serve as each other’s control. The WE also
serves as a SERS substrate. To implement an equivalent EC-
SERS combination, our group fabricated rGO SPE on poly-
imide substrates with silver functionalized WE to detect 4-
nitrobenzenethiol (4-NBT) as a standard thiol system usually
used for estimation of photocatalytic activity and selectiv-
ity.”*! The independent use of SERS allowed us to qualita-
tively detect the molecule and track the photoinduced
transitions of 4-NBT to 4-aminobenzenethiol (4-ABT). In
addition, the use of EC confirmed the analyte nature and
helped quantify the electroactive surface area of silver nano-
structures. Recent works implement SPE geometry for the
equivalent combination.”***! Castafio-Guerrero et al.l**!
showed a sequential use of SERS and electrochemical imped-
ance spectroscopy (EIS) for carcinoembryonic antigen
(CEA) detection using gold nanostars for electrode modifi-
cation. In this case, both methods provided helpful informa-
tion, but the sensitivity of SERS was higher than that of EIS
(0.25ng mL ™" for EIS and 0.025ng mL~" for SERS).
Overall, the equivalent combination is one of the most
widespread as it implements two types of sensing/transduc-
tion based on the same sensor materials, and such realiza-
tion is easy to fabricate and implement. To improve the
selectivity of both approaches, the WE can be functionalized
with enzymes or antibodies. The other way is to use noble
metal NPs or Au/Ag surface roughening that increases sur-
face area and plasmonic activity. Thus, measures to boost
one method also improve the performance of the other one.
The most significant limitation of SERS is that it is
mostly not a quantitative detection method without add-
itional modifications, while electrochemistry provides more
options for quantitative analysis of various parameters,
including the active surface area and capacitance. As a block
of analytical techniques, EC could be used for concentra-
tion/activity quantification if adequately calibrated. On the
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other hand, EC provides only limited information about the
chemical composition of the analytes, in contrast to SERS.
For instance, Sanger et al.”® have shown the evaluation of
the electrochemically active surface area (ECSA) with EC,
making it possible to quantify the SERS enhancement factor
for paracetamol. In biomedical settings, such a complemen-
tary combination, where the advantages of one method over-
come the disadvantages of another (i.e., SERS provides
qualitative investigation, while EC is used for quantitative
analysis) (Table 1) allows one to avoid false positive and
false negative results provided with two methods.”””! In the
forensic analysis of cocaine, the EC response was used to
quantify the amount of adulterating compounds such as
paracetamol and caffeine. The results were comparable to
the standard method, which is high-performance liquid
chromatography. At the same time, SERS gave additional
information about the presence of another pharmaceutical
substance, which is used for diluting cocaine, such as lev-
amisole.”® Remarkably, the optimized electroactive area
from EC measurements is also best for SERS performance
since the EC activity of a WE depends on its composition
and microstructure, which are the same parameters that
affect the SERS sensitivity. "’

Simultaneous application of electrical potential and illu-
mination with light can lead to various modifications of the
analyte and the SERS electrode. These effects are already
employed to enhance the SERS signal by applying an exter-
nal potential, monitoring electrochemical redox reactions
using SERS, and following photocatalytic reactions (see
Table 1).

Potential applied to the WE leads to the shift in the
energy levels at the analyte-metal interface. When the Fermi
level (Ep) of the electrode aligns with the highest occupied
molecular orbital (HOMO)/lowest unoccupied molecular
orbital (LUMO) levels of the molecule, the HOMO-E; and
Ep-LUMO transitions become resonant with the incident
laser wavelength.'®! Thus, a charge transfer mechanism can
be triggered between HOMO and unoccupied states above
the Fermi level (or between LUMO and occupied states
slightly below Ep). This process can be tuned by applying a
potential to the SERS substrate until resonant conditions for
the photoexcitation are reached, or electrochemically
induced charge transfer can increase the Raman cross-sec-
tion of the molecule, contributing to higher signal amplifica-
tion.["*"192) However, when analyzing the results, one has to
be aware that the Raman intensity, in that case, is no longer
proportional to the molecule concentration and, thus, a
quantitative analysis becomes way more challenging.

Another effect of applying the potential is the electrostati-
cally-induced adsorption/desorption of the analyte molecules
on the SERS active electrode during a potential sweep.!'*!
This will change the concentration profile of different spe-
cies. Thus, quantification using SERS has to be carefully
assessed. In this regard, Bindesri et al.'® have shown a
substantial ~ signal enhancement obtained from 4-
Aminobenzenethiol (4-ABT) and levofloxacin when applying
cathodic potential, with maximum signal intensity observed
at —0.6V vs. Ag/AgCl RE for both analytes. The signal

remained stable with a further potential increase for levo-
floxacin, but it decreased for 4-ABT, especially for modes
attributed to the plasmon-assisted catalytic conversion of 4-
ABT to dimercaptoazobenzene (DMAB). It should be men-
tioned that levofloxacin is a problematic molecule for SERS
detection, because of the absence of functional groups which
could give a strong Raman signal. As a result, the drug sig-
nal in SERS spectra only appears with a potential increase
using the SPE.!"®) The concentration profile change can be
counteracted by covalently linking the analyte to the elec-
trode surface, as shown for Rhodamine 6 G (R6G) on an
ITO substrate modified with silver NPs.["! The SERS spec-
tra are also affected by the molecule/surface adsorption
geometry. Therefore, even small electrode potential changes
can impact the Raman peaks intensity ratios in the
SERS spectra.

The next EC-enhanced SERS method, which is based on
the usage of EC to increase the efficiency of SERS detection,
is also complicated by the possibility of changing the SERS
substrate surface itself (particle size, roughness, hotspot
density, surface morphology, etc.) by applying a potential
(Table 1). In case of too high a positive potential, the plas-
monic metallic nanostructures become oxidized, and the
SERS substrate could become inactive. Such an effect can be
mitigated by taking into account the potential window of
the SERS active WE. On the other hand, silver electrodes
could be restored and cleaned from tarnish or other con-
taminants by applying constant negative potential or making
several potentiodynamic cycles.!'®! Similarly, depending on
the voltammetry scanning parameters, a silver electrode
could be roughened,'®”) increasing the hotspot density that
contributes the most to the Raman signal amplification.
Yang et al. have shown the in situ monitoring of the electro-
deposition of copper on a glassy carbon electrode using
SERS with R6G as a Raman probe.!"%) The different stages
of the electrodeposition process of copper, such as the
nucleation stage, formation of aggregates, and shape change
of the copper NPs, directly affect SERS enhancement, indir-
ectly monitoring the process of EC deposition of the plas-
monically active metal.

The other experimental issue combining EC and SERS is
that the effects on electrochemical doping or modifications
of the electrode material cannot be avoided since the poten-
tial change of the WE is needed to record a voltammo-
gram."®! In this case, SERS monitoring of EC combination
could be applied for tracking the electrochemical activity
(Table 1). For example, SERS could be used for in situ mon-
itoring of the intensity changes in N-O stretching mode,
indicating the electrocatalytic reduction processes of the
nitrate ion.'°! In this case, the chemical changes are irre-
versible, and the obtained SERS spectrum represents the
electrochemically reduced system rather than the original
mixture. On the bright side, SERS signals or fingerprints of
the molecules could give us information about the chemical
reactions happening on the surface at a particular potential.
In one other work,'* time-resolved SERS was imple-
mented to monitor the intermediates of carbon dioxide
reduction reactions with millisecond resolution and surface
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through a microfluidic channel;!'?*! d) EC-TERS setup. Adapted with permission from Ref. [124] Copyright (2019) American Chemical Society.

changes of the copper substrate. In principle, EC can assist
SERS detection by modifying the original molecule through
a Faradaic process and making a product with a much
higher Raman activity (potential-driven chemical enhance-
ment)."'%"") 1t is instrumental when the original analyte
has a very low Raman cross-section, making the simple
detection of minute quantities impossible (Table 1).

Like the applied potential, sample illumination in the
SERS experiment can induce photochemical reactions, some-
times unforeseen ones.””''?! SERS itself could assist the
interpretation of such photochemical processes whenever
they are visible in the Raman spectra.””!"* For example,
Zhao et al. investigated the conversion of pyridine to bipyri-
dine by C-C coupling triggered by surface plasmon reson-
ance (SPR) -assisted electrocatalytic transformation. The
duration of laser irradiation and electrode potential was con-
trolled during the SERS spectra acquisition to confirm the
improved efficiency of dimerization properties due to SPR
excitation and applied potential.!''* If that happens, then
the EC data acquired simultaneously to SERS would not
represent the original analyte under investigation and could
be misinterpreted. Information about the molecule’s elec-
tronic properties, attention to electronic or molecular transi-
tions that could be excited by the Raman laser, and the use
of proper controls help mitigate this effect.

For such a situation, EC-SERS (SHINERS) monitoring of
photocatalytic reactions could be used to study SPR-induced
and photocatalytic reactions to suppress undesired effects
(Table 1). Inadvertent charge transfer and photocatalytic
reactions could be minimized, for example, using SHINERS,
which are plasmonic NPs coated by a thin silica layer so
that the SERS active metal NPs at the core do not influence
electrochemical reactions.""*""'”! This approach makes char-
acterizations of plasmon-induced photocatalytic or photo-
electrocatalytic reactions more reliable. This strategy could

also help minimize the effects of protein denaturation or
biomolecule decomposition when using metals as SERS sub-
strates or electrochemically active materials. However,
SHINERS can also act as a physical barrier between the ana-
lyte in the bulk electrolyte and a WE, affecting mass trans-
port and electrochemical reaction kinetics.

Finally, EC combined with SERS could provide multiple
insights into reaction Kkinetics and intermediates, while
changing experimental conditions could enhance the signal
in both approaches.

4. Experimental implementation

The combination of EC and optical techniques can be cate-
gorized into ex situ and in situ methods. Ex situ approaches
involve spectroscopic measurements outside the electro-
chemical system. On the other hand, in situ methods require
the integration and measurement of electrochemical and
optical techniques simultaneously and directly in the electro-
chemical system."'® In situ methods, also referred to as
spectroelectrochemistry, have been used to monitor elec-
trode reactions, surface processes, and the formation of
intermediates in electrochemical reactions./®'*"!

Most of the EC-SERS combinations mentioned in the
previous section, except the equivalent combination per-
formed sequentially, require simultaneous implementation of
both methods. It means that SERS should be performed in a
liquid medium, which could be challenging as it requires
using a laser beam on a WE surface through the electrolytic
solution. There are currently several experimental setups to
perform such measurements, avoiding crucial sacrifice of
signal enhancement and sensitivity (Figure 3).

The first way is to focus the laser beam directly through
the liquid in an EC cell."®*! The second approach is fabri-
cating a custom-made photoelectrochemical cell with a
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transparent window for SERS measurements. For example, a
vial could serve as a photoelectrochemical cell (Figure
3a).1120:126:127) However, those methods imply two additional
interfaces that could decrease the sensitivity. The third way
is to use water-immersion objectives (Figure 3b).['??]

A more elegant solution is to make a microfluidic chan-
nel between the Polydimethylsiloxane-based electrodes.!'*!
In this case, electrodes have a disk shape, and the analyte
solution is pumped through a microfluidic channel, as
shown in Figure 3c. This approach is widely used to per-
form EC-SERS."?%1??)

Electrochemical tip-enhanced Raman spectroscopy (EC-
TERS) allows performing EC and Raman spectroscopy
measurements with nanometer resolution. EC-TERS uses a
plasmonically active electrically insulated tip to perform sim-
ultaneous detection by both approaches. The physical prin-
ciple of tip-enhanced Raman spectroscopy (TERS) is similar
to that of SERS since both of these techniques are based on
plasmon signal amplification. In the case of TERS, the plas-
mon excitation occurs at the apex of the gold or silver
atomic force microscopy (AFM) or scanning tunneling
microscopy tip so that the resolution is limited by the tip
size and no longer by the diffraction limit. In turn, scanning
electrochemical microscopy (SECM) is an AFM implementa-
tion of electrochemical measurements that reaches a tip-lim-
ited resolution of electrochemical properties."**"*!! It can
probe electron, ion, and molecule transfers and other reac-
tions at solid-liquid, liquid-liquid, and liquid-air interfaces.
The tip serves as a CE, and the current is measured to char-
acterize the electrochemical activity at the working electrode.
The tip itself must be electrically insulated everywhere
except the very apex to eliminate parasitic currents. SECM
has been successfully used to map surface redox potential
distribution, investigate electrochemical reactivity of interfa-
ces, et 1130131

EC-TERS was successfully implemented for local investi-
gation and mapping of redox reactions/activity [124132) wyith
a high lateral resolution up to 8 nm,!"**! monitoring of plas-
mon-driven  reactions,!'**  potential-induced molecular
reorientation,*”  probing of molecular absorption.!***!
However, due to the complexity of experimental implemen-
tation, there are very few experimental setups for dual EC-
SERS(TERS) detection. Different experimental conditions
allow for diversifying the approaches and maximizing the
information obtained from the experiments. The critical part
is where these methods are used and which applications
they could serve.

5. Applications

The availability of the EC-SERS setups limits the wide use of
this synergetic combination for practical applications.
However, the benefits are worth the result. In addition to
precious data, these methods afford high flexibility: the user
is barely limited in the choice of experimental configuration,
WE materials, and the application area. In the following sec-
tion, we sort the current implementations of EC-SERS into
three categories: biomedicine, energy-related applications,

and environmental monitoring, each of those are supported
by tables summarizing the main parameters of EC-SERS
approach efficiency.

5.1. Biomedical applications

Biomedical applications, such as healthcare, laboratory diag-
nostics (in vitro), biochemistry, biotechnology, cell biology,
and biological engineering, require detection methods that
could achieve and even overcome clinically relevant levels of
sensitivity, quantification of the concentrations, and high spe-
cificity with low false positive and false negative rates. The
range of works reviewed below shows that EC-SERS detec-
tion fulfills all these requirements. In Table 2 we also show
the main quantitative and qualitative indicators achieved by
now to highlight how promising EC-SERS is in biomedicine.

Gu et al."*”) demonstrated the extremely low LOD of 0.3
and 0.6pg mL~' for two cancer biomarkers, carcinoem-
bryonic antigen (CEA) and alpha-fetoprotein, respectively,
using a gold microarray electrode immunoassay platform for
simultaneous dual EC and SERS readouts. In addition, this
sensor was used to detect serum in human blood, collecting
the probes from both healthy and sick people. The perform-
ance is comparable with the existing clinical methods, with
a recovery ranging from 95 to 107,5%. The improved sensi-
tivity and quantification of the analyte were shown by Zhou
et al"®® for miRNA detection (Figure 4a). The authors
achieved incredibly low LODs of 0.12fM for SERS and
2.2fM for EC. First of all, the 3D popcorn-like Au NP film
electrodes with a high ECSA contributed to the signal
enhancement; secondly, the toehold-mediated strand dis-
placement amplification reaction improved the signal-to-
noise ratio; finally, the dual-channel detection itself contrib-
uted to higher accuracy. Another impressive work by
Ilkhani et al.l"*! showed for the first time the ability of the
chemotherapeutic drug doxorubicin to intercalate DNA mol-
ecules (Figure 4b). The remarkable specificity of SERS
allowed tracing the drug intercalation in DNA, whereas EC
measurements provided dose-dependent information. The
proposed approach can be considered a relatively inexpen-
sive and straightforward way to test new drugs at their
development stage.

The high specificity of EC-SERS was also shown for the
case of bacterial detection. For SERS alone, identification
remains controversial due to the complex signals and rela-
tively low signal enhancement with such large objects. Do
and colleagues have shown an EC-SERS sensor to determine
bacteria toxin pyocyanin in biofilms as an early infection
marker under different pH and electrical potentials.!"**! The
EC-SERS approach is beneficial since the bacteria secretion
complex includes different small molecules, which are
Raman and redox-active. The EC-SERS demonstration in
liquid conditions makes it attractive for analyzing bacteria
biofilm formation in water pipes and containers for early
measures to minimize infection spread. The synergy of EC-
SERS appears not only in improved detection sensitivity but
also in distinguishing between E. coli K-12 and B. megate-
rium by the group of Brosseau, one of the leading groups in
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portable EC-SERS."! They analyzed seven nucleotide break-
down products of bacteria and studied each component’s
proportion at an electrode potential of —1V that allowed
strain identification.!"*!! For the first time, bacteria screening
and discrimination were possible with the EC-
SERS approach.

To achieve such record sensitivity and selectivity for bio-
objects detection, the choice of the electrode material is of
high importance: its effect on the bio-object stability must
be taken into account. In this case, existing options for WE
vary from commercial carbon SPE to paper or textiles
(981041 modified with a range of materials from Au or Ag
NPs *! to more complex materials with multimetal NPs!*!
I or NPs of specific shapes.”*'**) By combining the EC-
SERS  electrodes  with  specific  biofunctionalization
approaches, such as using antibodies or aptamers, it is pos-
sible to obtain an almost unlimited range of test system

9 ¢) A photograph of the fabric-based sensor, the configuration contains three electrodes (WE, CE, RE).!

. . . . 94,137-139,143-145
designs for various bioanalytical purposes.! ]

Such a technique has been implemented in an immunosen-
sor to detect CEA, a tumor biomarker, by sequential meas-
urements with EIS and SERS at physiologically relevant
concentrations with high accuracy[94] (Figure 4).

The critical challenge in biomedical analysis is developing
point-of-care methods. Using the EC-SERS approach with
an additional set of functionalized SERS electrodes could be
potentially a universal analytical point-of-care platform with
clinically relevant screening parameters. Such methods
would rely on easily analyzing collectable biological liquids
such as urine and saliva but have to overcome the challenge
of complex spectral response both in EC and SERS. The
combined approach was successfully applied to detect tuber-
culosis DNA and common antibiotic levofloxacin in syn-
thetic urine."**'* A bimetallic EC-SERS substrate was
proposed by Zhao et all"*?! and employed to detect uric
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acid, a potential biomarker of preeclampsia, in synthetic
urine in clinically relevant concentrations. Portable EC-SERS
setup recently showed its applicability for evaluating the
effectiveness of immunosuppression therapy for cancer
patients. It has been successfully used to detect 6-thiouric
acid (6-TUA) at pM levels in synthetic urine. 6-TUA is a
metabolite of the immunosuppressive drug azathioprine,
commonly used for bone marrow transplants.!"*! Thus, the
portable versions of EC and SERS, and EC-SERS electrode
functionalization techniques prove that this combination is
universal and valuable enough for point-of-care diagnosis.
However, in that work, authors used synthetic urine as the
analyte, with a perspective to take biomaterial from real
patients in future clinical studies. As for saliva analysis,
Velicka et al."*”) showed the detection of caffeine and its
metabolite paraxanthine in human saliva samples using a
WE decorated with Ag NPs (Table 2).

These examples demonstrate that EC-SERS is promising
to become an efficient tool for noninvasive diagnosis of
pathological conditions, monitoring patient status and ther-
apy effectiveness, and is suitable for point-of-care applica-
tions.!"*" An interesting strategy may be the development of
textile-based EC-SERS sensors that could be upgraded for
wearable EC-SERS-based analytic systems (Figure 4c).['**!
The EC-SERS coupling was implemented for drug detec-
tion’[98,147—149] biomolecule analysis’[94,95,137,138,142—144,150,151]
and bacteria detection '*!! to improve the limit of detection,
sensitivity, and accuracy that would make it genuinely com-
petitive in comparison to existing analytical approaches. In
addition, the EC-SERS benefits from various functionaliza-
tions developed to detect specific biomolecules that make it
versatile and highly specific.

5.2. Photocatalysis and energy applications

5.2.1. Relevance in photocatalysis and energy-
related research

Energy storage and generation is a hot topic for the global
community nowadays to prevent the energy crisis and
reduce environmental pollution.!"**) Meanwhile, the core of
modern energy solutions is chemical reactions. The most
crucial of them include hydrogen evolution reaction (HER),
a cathodic reaction in electrochemical water splitting to
obtain high-purity hydrogen. Oxygen evolution and reduc-
tion reactions (OER and ORR) are used in batteries and fuel
cells. Finally, a CO, reduction reaction (CO,RR) is
employed to gather the energy released during the reaction
while at the same time reducing CO, concentration to miti-
gate the greenhouse effect. The low efficiency and control of
these reaction pathways and products remain challenging.
Catalysis is the key to reducing the activation energy of the
energetically demanding chemical reactions and improving
selectivity. (Photo)catalysis, in particular, has a significant
impact on the energy industry due to various possible appli-
cations such as energy storage, harvesting, environmental
conservation, and others, providing clean and renewable
energy sources.'™'**) In this regard, investigating
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Figure 5. Electronic band diagram of energy levels in plasmon-induced
photocatalysis.

(photo)catalysis mechanisms and developing effective (pho-
to)catalysts is an important challenge.

In order to catalyze chemical reactions, an effective way
is to use various plasmonic nanostructures.'**"**! Since
plasmonic nanostructures are also necessary for SERS detec-
tion, EC-SERS is uniquely suitable for investigating such
reactions’ fundamental mechanisms and energy-related var-
iations. In plasmon-induced photocatalysis, the metal nano-
structures can inject highly energetic electrons (or holes)
into a molecule in close contact, resulting in a photocatalytic
reaction (Figure 4). Although this name may be misleading,
these highly energetic electrons are also called “hot electro-
ns.”!'%) Hot electrons originate from the non-equilibrium
distribution of conduction electrons in the plasmonic NPs
that results in electrons (holes) occupying higher (lower)
energy levels than set by the Fermi distribution at room
temperature.ua] Thus, such energetic electrons (holes) can
be transferred more easily to the LUMO, HOMO of a mol-
ecule in contact with the plasmonic NPs (Figure 5).['*!
However, in addition to this charge-transfer mechanism to
explain plasmon-induced photocatalysis, the local tempera-
ture increase in the plasmonic NPs under resonance light
excitation can also contribute to the photocatalytic trans-
formation!!63-16%] (Figure 5).

The implications of EC-SERS in energy-related research
could vary from the simple characterization of ions, like in
dehydrogenase catalysis,!'® to the vital tool for in situ ana-
lysis of the catalytic reactions as it can provide real-time
spectroscopic information on how electrochemical reactions
occur. That is relevant as some reactions cannot be induced
only with light, and electrochemistry comes into play here.
SPR could drive several heterogeneous catalytic reactions,
even though their performance could be significantly
improved by applying electrical potential. The typical model
systems for studying photocatalytic reactions are thiols.

For instance, in SERS of thioanisole, there are potential-
dependent Raman peaks at 464cm ' and 1584cm ' that
are attributed to the S-S bond indicating dimerization and
benzenyl group stretching respectively and occur only
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lated NPs (Au@SiO2 NPs, SHINs) at a Pt(111) surface and the mechanism of the ORR process revealed by the EC-SHINERS method.'®”!

starting from the potential of —0.4V vs. Ag/AgCl RE at an
electrochemical cell which contained a 0.1 M KCI solution.
The Raman modes’ intensity and their splitting occur with
further potential increase.''?! These findings are essential to
proposing the mechanisms of a surface chemical reaction,
starting from the barrier of dimerization. Another example
is a dehydroxylation reaction to produce thiophenol
achieved during the SERS investigation of p-hydroxythio-
phenol on the surface of roughened silver as a model system
for heterogeneous catalytic reactions. The reaction only
occurs when applying the potential and goes faster in acidic
solutions. ¢!

EC-SERS could drive some reactions selectively, like in
the case of 4-ABT transition to DMAB on the surface of
roughened silver in 0.1 M NaClO,. During the illumination
with a high-power laser, 4-ABT molecules are oxidized to
DMAB, while DMAB can be reduced to 4-ABT at negative
potentials with a complete reduction at the potential of
about —0.8V at the Ag electrode. Therefore, laser leads to
the formation of DMAB, while electrochemical reduction
converts it back to 4-ABT.['*®! Three main factors affect
plasmon-driven chemical reactions: surface plasmons, plas-
mon resonance, and applied potential, whose increase makes
it possible to overcome the junction barrier more easily. It is
especially relevant to a potential-dependent, plasmon-driven
catalytic reduction reaction of 4,4'-dinitroazobenzene
(DNAB) nitro group (NO,) to amine group (NH,). EC-
SERS spectra were measured in an electrochemical cell con-
taining a solution of 0.1 M Na,SO, at potentials from 0 to
—1.2V, and DNAB occurs between —0.8 and —0.9V with

532 nm laser excitation. Meanwhile, for 4-nitro-4'-aminoazo-
benzene, the reaction is observed even at 0V, which means
that reaction has a much lower barrier.!'*”!

The photocatalytic reactions driven by charge transfer
could also be suppressed by using ultrathin silica or alumina
shells on gold NPs such as those used in SHINERS. This
way, NPs are not in direct contact with a molecule that
undergoes reaction upon the charge transfer, while the SERS
effect could be achieved since it relies on the electromag-
netic enhancement that extends beyond the silica shell.”'”!

5.2.2. Specific reactions studied for energy conversion
applications

The HER, OER, ORR, and CO,RR catalytic reaction mecha-

nisms were investigated using the combination of electro-

chemical and optical methods and are discussed in

this section.

Recently, the SERS platform was demonstrated to study
electrochemical HER mechanisms using MoS,.[""Y MoS,
was suggested as a low-cost alternative catalyst for electro-
chemical hydrogen production from water.'”>""7* Chen
et al., obtained Ag core-shell heterostructure (Ag@MosS,)
that demonstrates the size-dependent electrochemical activ-
ity toward HER. Ag@MoS, core—shell heterostructures
were obtained via a two-step wet-chemical synthesis by the
chemical transformation of Ag,S@MoS,. First, to initiate the
growth of MoS, on the surface of Ag,S nanocrystals, Mo-
oleylamine (OM) stock solution was injected. The mixture
was then cooled down with the further addition of S,
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Table 3. EC-SERS sensors in Photocatalysis and Energy Applications.

Potential at
which the
reaction begins
to occur

Analyte Substrate (WE) Functionalization

RSTD/reproducibility

Efficiency and important
observations Time of analysis Reference

P Roughened Ag PHTP —03V -

PATP Roughened Ag DMAB —06V -

DMAB Roughened Ag 4NTA —04V -

Hydrogen Ag@MoS, —250mV

heterostructure

MOSZ

Oxygen Roughened Au - 14V -

Oxygen Au@SiO, Pt;Co

>10000 cycles

Maximum TP/PHTP intensity - ner
ratios: 1.29 (pH 2), 1.71
(Power 20 mW), 1.81
(Wavelength 532 nm)

The intensities of the 1140,
1388, and 1438 cm ™"
bands dramatically
changed with the potential
shift from —0.6 to —1V

From —0.6 to —1.2V, the - 12l
Raman peaks at 464, 1573/
1585cm " gradually
increase as the thiophenol
dimer is formed. The
dimerization is stable.

Highest signal (combination -
of HER activity and SERS)
was obtained on the
Ag@MoS$, with a size
of 23.4+3.8nm

Surface-bound OOH was
observed on an Au anode.
Au-OOH species are the
precursors to O, in OER.
815-830cm ™' band
originates only from OOH
species formed during OER

Bridge adsorbed oxygen (b- -
0,*) and *OOH (bands at
711 and 876cm™") at Pt
sites detected in acidic and
basic solutions. Adsorbed
*OH (band at 756 cm™")
detected at Co sites in
basic solution. Weaker
interactions between Pt
and adsorbed
intermediates (0*) lead to
improved ORR activity

90s [168]

n71

3s for each spectra 7%

[203]

TP, thiophenol; PHTP, p-hydroxythiophenol; DMAB, 4,4’-dimercaptoazobenzene; PATP, p-aminothiophenol; 4NTA, 4-nitrothioanisole; HER, hydrogen evolution reac-

tion; OER, oxygen evolution reaction; ORR, oxygen reduction reaction.

ethanol. Next, Ag,S@MoS, was added to OM. The slurry
was degassed and heated. The mixture was then purged with
nitrogen and heated. Right after, trioctylphosphine was
injected into the solution. Finally, after being kept at 150°C
for 5min, the Ag@MoS, mixture was cooled down and col-
lected. EC-SERS was performed to study the HER process
on the single-layer MoS,-coated polyhedral Ag@MoS, heter-
ostructure. Based on the obtained spectral evidence of S-H-
bond formation, it was possible to suggest that the S atom
in MoS, is the catalytically active center of HER. The high-
est SERS signal was obtained during electrochemical HER
on the Ag@MoS, with a heterostructure size
of 23.4+3.8nm.l"""

The SERS study of widely used iron porphyrin electroca-
talysts, being widely used for ORR in aqueous solutions, was
performed directly on a rotating disk electrode.
Spectroscopic and electrochemical data are required to
investigate the intermediates occurring during electrocataly-
sis, their nature, and the catalysis mechanism. Such a com-
bination of dynamic electrochemistry with SERS was
successfully applied at different potentials corresponding to
the ORR conditions to understand the role of various axial

ligands in the mechanism of electrochemical oxygen reduc-
tion in situ.'”>! The issues of water electrochemical splitting,
such as low OER efficiency and activity, are associated with
the overpotential in anodic OERs, which is why this reaction
mechanism is essential to understand. EC-SERS allows
investigating the anodic OER and illustrating the presence
of OOH species as intermediates in the SERS spectra during
the OER, which is not possible to confirm using solely elec-
trochemical methods. In the case of Au surfaces, the pro-
posed mechanism is oxygen coupling on the Au surface to
produce surface-bound -OOH at potentials where O, is
released from the electrode surface for the electrochemical
evolution of O, on the Au anode. These findings are in
agreement with the theoretical studies and could signifi-
cantly contribute to understanding the elementary processes
involved in the electrochemical oxidation of water.!'”!
Considering the advancements in the investigation of
ORR reaction mechanisms, a notable review, which demon-
strates advancements in probing the oxygen electrochemistry
with in situ SERS, was recently published."””) Wang et al.
summarized recent progress in developing and monitoring
Li-O, batteries in Li"-induced ORR catalytic systems. SERS
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Figure 7. Schematic of multimodal sensors combining different detection methodologies on a single platform for dual functional detection of chlorfenapyr via

EC-SERS.I®%!

allows the acquisition of spatial and chemical information in
oxygen electrochemical reaction mechanisms. The authors
discussed different strategies to overcome the in situ SERS
limitation of only a few compatible substrates (Au, Ag, and
Cu). One of the solutions is the use of SHINERS. The
Raman signal can be amplified with isolated Au NPs (coated
with ultra-thin SiO, with no pinholes) and used as an effect-
ive alternative for SERS inactive substrates. In addition, it
was reported that SERS and in situ SERS had been used to
investigate other battery mechanisms, including complex
electrode  deposition/decomposition behavior.['”# 8] Eor
instance, EC-SHINERS was applied to investigate ORR,
essential for fuel cells and batteries, on Pt;Co nanocatalysts.
In situ EC-SHINERS was performed in an O,-saturated
solution from 1.1V to 0.2V versus the reversible hydrogen
electrode and allowed for detection of bridge adsorbed oxy-
gen (b-0,%), and *OOH reaction intermediates at Pt sites,
and adsorbed *OH at Co.''"®! EC-SHINERS was also used
to systematically investigate the ORR process at Pt single-
crystal surfaces to obtain direct spectral evidence of OH*,
HO,*, and O*” (Figure 62).'®) In the above-mentioned
cases, SHINERS is applied to learn the electrochemical
mechanisms and processes taking place in ORR reactions.
SHINERS itself does not directly contribute to EC but makes
it possible to see some spectral evidence that is hidden with-
out the use of this approach.

Using EC-SERS for CO,RR investigation is attractive as
EC helps to study electron transfer, while SERS gives in situ
information of oxidized and reduced species with plasmonic
nano-gaps. That could be useful in renewable fuels, as was
demonstrated for a nickel bis(terpyridine) complex sand-
wiched by thiol-anchoring moieties between two gold surfa-
ces.l') The experiments allowed tracking the redox
transitions of eight molecules providing information on sin-
gle-molecule catalysts. Moreover, for the catalytic mechan-
ism investigation, EC-SERS could be coupled with
theoretical studies with the help of density functional theory
calculations (Figure 6).

Overall, the molecular-level understanding of ORR, HER,
OER, and CO,RR is essential for the rational design of
highly active catalysts for energy applications. EC-SERS,

especially in situ EC-SHINERS, proved to be an efficient
method for characterizing materials and interfaces in various
electrochemical systems, especially on the surface of single-
crystal electrodes (Figure 6b).!'"”) To provide a more
detailed analysis of the discussed works regarding materials,
functionalization, efficiency, important observations etc., we
made a summary in Table 3.

5.3. EC-SERS in environmental applications

The rapid growth of pollution levels caused by industrializa-
tion and the constant rise in produced waste results in a
challenge to detect harmful compounds, such as heavy met-
als, toxic chemicals, pesticides, dyes, and pharmaceutical
residuals (available quantitative values and achievements
could be found in Table 4).[188189]

On the one hand, the EC part offers chemical detection
with low detection limits, aided by electrochemical transfor-
mations, while the light used in SERS promotes sensitivity
and plasmon-induced photocatalytic decomposition of pollu-
tants. On the other hand, the byproducts can be detected or
transformed during the EC-SERS measurements, contribu-
ting to the detection by either method. Therefore, EC-SERS
dramatically decreases the chances of a pollutant going
undetected compared to conventional methods such as
coagulation and adsorption. For example, if a pollutant
redox potential is beyond the electrochemical window of the
EC system, then at least EC could be used to maximize the
SERS detection via a tuning enhancement mechanism. At
the same time, the charge transfer and plasmon photocataly-
sis of the pollutant could produce species that fall within the
EC window, allowing the detection of products using the
EC channel.

The equivalent combination (Table 1) was recently imple-
mented for ultrasensitive detection of carbendazim, a widely
used pesticide, in rice and tea. For that purpose, graphene-
like titanium carbide MXene/Au-Ag nanoshuttles were com-
bined with machine learning for both EC and SERS. Mutual
verification contributed to enhancing the sensitivity of car-
bendazim detection."®! Another example is trinitrotoluene



(TNT) detection. TNT is an explosive and toxic compound
widely used in manufacturing; its residues pollute the air,
water, soil, and biosphere. TNT has low optical absorption,
but it becomes optically visible due to the reaction with
amine complexes."”"'*?! Another dual-functional EC-SERS
sensor was developed by Sanger et al. using silica nanostruc-
tures with Au nanowires deposition to form SPE-shaped
electrodes. The sensor showed high electrocatalytic activity
to paracetamol with the oxidation potential of 300 mW, and
allowed its quantitative detection.”®! Moreover, remarkable
LODs of 42ppm using EC and 7ppm using SERS were
recently achieved with the complementary EC-SERS detec-
tion of chlorfenapyr, agricultural insecticide, and a toxin.
SERS was used for the analyte identification, while qualita-
tive analysis was done with a contribution of EC
(Figure 7).1"%

The combination of Raman spectroscopy with plasmonics
recently impacted portable water pollutants detection.!'** A
novel sensor developed by Sarfo et al. has shown an excel-
lent selectivity for Pb*" ions. The LOD and limit of quanti-
fication (LOQ) were extremely low (0.69 pM and 2.20 pM,
respectively). This SERS sensor has also been successfully
used to detect lead ions in drinking water while capable of
dealing with matrix effects. EC, in this case, was used for
the treatment of SERS substrate for repeated SERS detection
of Pb(Il) ions. In particular, the aminobenzo-18-crown-6
with Pb(II) ions (AB18C6-P(II)) complex was desorbed
from the substrate surface by cyclic voltammetry. After that,
SERS was used to confirm the removal of AB18Ce6-P(II).
Then, the ABI8C6-P(II) complex was deposited and
obtained SERS spectra, demonstrating that electrochemical
treatment did not compromise the SERS activity. Exploiting
the electrostatic potential to concentrate Hg*" ions for SERS
detection was also shown by Zheng et al., who achieved an
impressive sub-picomolar detection limit."°")  Another
example was reported by Kandjani et al., who exploited the
plasmonic properties of Ag/ZnO arrays to detect and
remove mercury ions from wastewater.!'””) While the plas-
monic electromagnetic field enhancement was used in con-
ventional SERS detection of Hg>", the plasmon-induced
charge transfer resulted in the reduction of Hg>" to metallic
mercury that was then removed by annealing at 150°C.
Dyes decolorization and detoxification are of high import-
ance for water treatment as well. Thus, EC and SERS
organic pollutants degradation efficiency comparison and
their joint implementation were demonstrated to decompose
azo dyes.[l%] The potential-dependent spectra indicated that
dye reduction in an aqueous solution is a multi-step process
with the electrochemical reduction onset potential at —0.5V
with Ag/AgCl/KCl electrode in 0.1mol L™' KCI solution
(Table 4).

To summarize, EC-SERS is proven to be a superior ana-
lytical approach for environmental applications. In the
future, plasmon photocatalysis can offer considerable bene-
fits in water remediation since it could allow harvesting sun-
light to decompose pollutants into less harmful products or
those that could be more easily removed.
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6. Conclusions

Several reasons make a combination of EC methods with
SERS a powerful analytical approach. Using independent
detection channels, EC and SERS could give complementary
information and cover the blind spots of each other, reduc-
ing the risk of false results. Experimentally, the EC electrode
and SERS substrate can be realized as a single SERS elec-
trode—a conductive surface with plasmonic activity fabri-
cated from Au or Ag nanoparticles or films with the surface
functionalization for targeting specific analytes. Both meth-
ods impose similar requirements for the sample preparation
and SERS electrodes, like a high surface area. It makes their
work together almost straightforward. However, EC requires
an electrolyte medium to operate. SERS can be performed in
different environments from air and liquid to a controlled
atmosphere, so it poses little problem for both methods to
work together.

While new developments such as SERS and TERS
boosted Raman spectroscopy, conventional EC reached its
limits a while ago. Thus, EC is benefiting a lot from this
combination. However, a closer look into increasing SERS
signals by applying electrical potential shows that SERS also
has much to gain from EC. Compared to the conventional
Raman technique, SERS can reach remarkable sensitivity.
However, many strategies are being developed to drive SERS
sensitivity even further. These strategies are based on pre-
concentration, either with magnetic fields or with hydro-
philic/hydrophobic interactions. EC can also serve as a
preconcentration method for SERS by exploiting the electro-
static interaction between the analyte and the working
(SERS) electrode. Moreover, in contrast to magnetic and
hydrophobic/hydrophilic pre-concentration, EC is readily
tunable and reversible.

SERS techniques coupled with electrochemical methods
provide a powerful tool with some limitations for investigat-
ing and characterizing various target molecules. Different
setups are used depending on the analyte and the EC-SERS
combination types. In biomedical applications, dual readout
demonstrates high sensitivity with clinically comparable
LOD, potentially expanding the point-of-care clinical toolkit.
Although LOD and sensitivity of EC-SERS are competitive,
it is still not enough to overcome the existing clinical meth-
ods. Comparing EC-SERS with existing clinical approaches
such as enzyme-linked immunosorbent assay (ELISA), LC-
MS/MS, PCR, electrophoresis, chemiluminescence immuno-
assay (CLIA), etc. several areas of its improvement could be
identified. They include analysis time, cost-effectiveness,
throughput, process automatization, and standardization of
all analysis steps. Improvement of these parameters will
allow EC-SERS to be one of the top analytical techniques
for clinical implementation.

EC-SERS is highly beneficial for studying plasmon-
induced reactions and tuning their reactivity by applying
bias. Investigation of HER, OER, ORR catalytic reactions
with EC-SERS(SHINERS) methods allows the acquisition of
chemical and spatial information. Therefore, a deeper under-
standing of catalytic mechanisms could be obtained and
used to develop novel energy storage and harvesting
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systems. However, the spatial and temporal resolution of
EC-SERS methods still needs to be improved in the future.
EC-SERS also contributes to detecting environmental pol-
lutants with an improved sensitivity, which is critical for food
analysis, water remediation, and environmental monitoring.

7. Outlook

While the EC-SERS combination has some powerful bene-
fits, a few drawbacks are also worth considering. For
instance, SERS requires conductive and plasmonic materials.
These materials pose some complications when analyzing
biomolecules due to the strong biomolecule/metal inter-
action that could induce, for example, conformation changes
of proteins. This challenge is well-known in the EC commu-
nity, and, therefore, other electrode materials, such as glassy
carbon, are preferable instead of gold. However, for SERS,
glassy carbon cannot be suitable since its conduction elec-
trons have no plasmon resonances in the visible spectral
range, and therefore are not SERS active with conventional
Raman spectrometers. Thus, SERS requires WE to contain
plasmonic NPs, but it poses a risk of molecule decompos-
ition. This challenge can be addressed by developing nonme-
tallic SERS substrates, which have been gaining momentum
in recent years.

One of the most exciting applications of EC-SERS is that
it allows mimicking the electrostatic conditions of living sys-
tems. This is highly promising for understanding the mech-
anism and function of different molecules and cell
components from the mitochondria to the cell membrane
and the interaction of different cell types with various drugs,
which is paramount for pharmaceutics and healthcare. Also,
the first portable and field-deployable devices are expected
to appear in the near future. Portable EC and SERS units
already exist and could be integrated into some smart devi-
ces such as laptops or smartphones, making it possible to
use the EC-SERS sensor in the field conditions, which in
turn will massively expand scenarios of EC-SERS setup
applications!!2%146-17],

Moreover, SERS allows the investigation of cells and
other biomaterials’ interactions with different electrode
materials. For example, protein unfolding or denaturation in
the process of interaction with the WE could be evidenced
with SERS simultaneously such that the changes observed in
a cyclic voltammetry experiment could be appropriately
assigned not only to redox properties but also to struc-
tural changes.
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